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UNIT -1
METRIC SPACES

Introduction

A Metric Space is a set equipped with a distance function, also called a metric, which
enables us to measure the distance between two elements in the set.

1.1 Definition andExamples

Definition: A Metric Space is a non empty set M together with a functiond: M X M — R
satisfying the following conditions.

(1) d(x,y) = Oforallx,y e M

(i)  d(x,y) = Oifandonlyifx =y

@iii) d(x,y) = d(y,x)forallx,y € M

(iv) d(x,z) < d(x,y) + d(y,z)forallx,y,z € M[ Triangle Inequality]

d is called a metric ordistance function on M and d(x,y)is called the distance
between x and y in M. The metric space M with the metric d is denoted by (M ,d) or simply
by M when the underlying metric is clear from the context.

Example 1.
Let Rbe the set of all real numbers. Define a function d: M X M — Rby
d(x,y) | x- y|.Thend is a metric on R called the usual metric onR.

Proof.
Letx,y €R.

Clearly (x,y) =|x-y| = 0.Moreover,

dix,y)=0 < |x-y| = 0.
< x-y = 0.
©x =y

dlx,y) = |x-y]
= |y- x|
= d(y,x).

~d(x,y) = d(y,x).
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Letx,y,z €R.
d(x,z) = |x- z|
=|lx-y+y-z|

<|lx-yl+l|ly-z|

d(x,y) + d(y,2z).

~dx,z) < d(x,y) + d(y,2).

Hence d is a metric on R.

Note. When R is considered as a metric space without specifying its metric, it is the usual
metric.

Example 2
Let M be any non-empty set. Define a functiond : M X M — R by

Oif x=
d(x,y) = {1 i;x - zThen d is a metric on M called thediscrete metric or trivial metric on M.

Proof.

Letx,y € M.

Clearlyd(x,y) = Oandd(x,y) =0 © x = y.

Oifx=y
lifx+#y

Also,d(x ,y) ={
= d(y,x).
Letx,y,z € M.
We shall prove thatd(x,z) < d(x,y) + d(y,2z).
Case (i) Suppose x = y = z.

Then (x,z) = 0,d(x,y) = 0,d(y,z) = 0.
~dx,z) < d(x,y) + d(y,2).

Case (ii) Suppose x = y and z distinct.

Then (x,z) = 1,d(x,y) = 0,d(y,z) = 1.

~d(x,z) < d(x,y) + d(y,2).
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Case (iii) Suppose x = z and y distinct.
Then,

d(x,z) = 0,d(x,y) = 1,d(y,z) = 1.
~dx,z) < d(x,y) + d(y,2).

Case (iv) Suppose y = z and x distinct.
Then,

d(x,z) = 1,d(x,y) = 1,d(y,z) = 0.
~d(x,z) < d(x,y) + d(y,2).

Case (v) Suppose x # y # z.

Thend(x,z) = 1,d(x,y) = 1,d(y,z) = 1.
~d(x,z) < d(x,y) + d(y,2).

In all the cases,

d(x,z) < d(x,y) + d(y,2).
Hence d is a metricon M.

1.2.0pen Sets in aMetricSpace

Definition: Let (M ,d) be a metric space. Let a € M and r be a positive real number. The
open ball or the open sphere with center a and radiusr is denoted byB; (a,r) and is the
subset of M defined by B; (a,r)={x € M /d(a,x) < r}. We write B(a,r) for
B, (a,r) if the metric d under consideration isclear.

Note. Since (a,a) = 0 < r,a € B (a,r).

Examples:

1. In Rwith usual metric B(a,r) = (a — r,a +7r).

2. In R%*with usual metric B(a,r) is the interior of the circle with center aand
radiusr.

Definition: Let (M, d) be a metric space. A subset A of M is said to be open in M if for each
X € Athere exists areal number r > Osuchthat B(x,r) S A.

Note. By the definition of open set, it is clear that ¢ and M are open sets.
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Examples:
1. Any open interval (a, b) is an open set in R with usual metric.

For,

Letx € (a,b).

Choose areal number r suchthat0 < r < min{x—a,b—x}.
Then B(x,r) € (a,b).

~ (a,b)is openinR.

1. Every subset of a discrete metric space M isopen. For,
Let A be a subset of M.

If A = ¢, then A is open.

Otherwise, let x € A.

Choose a real number r such that 0 < r < 1. Then
B(x,r) = {x} € Aandhence Ais open.

2. Set of all rational numbers Q is not open in R. For,
Letx € Q.

For any real number r > 0,B(x,r) = (x — r,x + r) contains both rational and irrational

numbers.
~ B(x,r) € Qand hence Q is not open.

Theorem 1.1

Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let B(a,r) be an open ball in M.
Letx € B(a,r).
Thend(a,x) < r.

Taker; = r- d(a,x).Thenr; > 0.
We claim thatB(x,r;) € B(a,r).
Lety € B(x,1y).
Then (x,y) <.

Now,
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d(a,y) < d(a,x) + d(x,y)
<d(a,x) + n

=d(a,x) + r-d(a,x) = r.
~d(a,y) <.

~y € B(a,r).

» B(x,rl) € B(a,r).

Hence B(a,r) is an open ball.

Theorem1.2

In any metric space M, the union of open sets is open.
Proof.

Let (M, d) be a Metric Space.

Let{A;/i € I} afamily of open sets in M.

We have to prove A = U A4; is open in M.

If A = ¢ then Ais open.

~letA # ¢.Letx € A.

Then x € A; for some € [.
Since A; is open, there exists an open ball B(x,r) such that B(x,r) S A;.

~ B(x,r) € A.
Hence A is openin M.

Theorem 1.3

In any metric space M, the intersection of a finite number of open sets is open.

Proof:
Let A4, Ay, ..., A, be open sets in M.

We havetoprove A = A; N4, N ....N A,is openin M.
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IfA = ¢ then A is open.

~letA # ¢.Lletx € A.
Then,x € A;foreachi = 1,2, ... ,n.

Since each A;is open, there exists an open ball B(x ,1;) such that B(x ,r;) S A4;.

Taker = min{r;,ry, ..., 1, }.
Clearly,r > 0and
B(x,r) € B(x,r)foralli = 1,2,...,n.

Hence B(x,r) € A; foreachi = 1,2,... ,n.
~ B(x,r) € A.

~ Ais openin M.

Theorem 1.4

Let (M, d) be a metric space and A S M. Then A is open in M if and only if A can be expressed
as union of open balls.

Proof :Suppose that A is open in M.

Then for each x € A there exists an open ball B(x, 1) such that,B(x,r,) € A.
A = Uyea B(x,1y).

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls. Since
open balls are open and union of open sets is open, A is open.

1.2 Interior of aset

DefinitionLet(M , d) be a metric space and A S M. A point x € A is said to be an interior
point of A if there exists a real number r > 0 such that B(x,r) € A. The set of all interior
points is called as interior of A and is denoted by Int A.

Note: Int A € A.

Example: In Rwith usual metric, let A = [1,2]. 1 is not an interior points of A, since for any
real number > 0, B(1,r) = (1- 7,1+ r) contains real numbers less than 1. Similarly, 2 is
also not an interior point of A. In fact every point of (1,2) is a limit point of A. Hence IntA =

Page 7 of 47



STUDY MATERIAL FOR B.SC. MATHEMATICS 3\
REAL ANALYSIS |1 $V 8
SEMESTER — V, ACADEMIC YEAR 2020-21 * ¢

(1,2).

Note:

(1)Intp = pgandIntM = M.
(2)Aisopen © IntA = A.
(3)A € B > Int A C IntB.

Theorem1.5

Let (M ,d) be a metric space and A © M. Then Int A = Union of all open sets contained in
A.

Proof.
Let G = U{B/Bis an open set contained in A}

we have toproveInt A = G.
Letx €IntA.

Then x is an interior point of A.
~there exists a real number r > 0 such that B(x ,r) € A.
Since open balls are open, B(x, 1) is an open set contained in A.

~ B(x,r)caG.
L Xx € G.

Lete G .

Then there exists an open setB suchthat B © Aandx € B.

Since B isopen and x € B, there exists a real number v > 0 such that B(x,7) € B € A.
. xis an interior point of A.

~ x€EIntA.

From (1) and (2), we get Int A = G.
Note:Int A is an open set and it is the largest open set contained in A.

Theorem1.6
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Let M be a metric space and A,B € M. Then

(1) Int(A n B) = (Int A) n (IntA)
(2) Int(A U B) 2 (Int A) U (IntA)

Proof.
(DAnNnB < A= Int(A n B) < Int A.

Similarly, Int (AN B) € Int B.
SINE(ANB) S (INEA) N (INEA) et (a)

IntAC AandIntB S B.
~ (IntA)n(IntA)SANB
Now, (Int A) N (Int A) is an open set contained in N B .

But, Int (A N B) is the largest open set containedin N B .
SNt A)N(INEA) SINE (AN B) e (b)

From (a) and (b) , we get Int(A N B) = (IntA) N (IntA)

ACAUB = IntA < Int(A U B)
Similarly, Int B € Int (A UB)
~ Int(A U B) 2 (IntA) U (IntA)

Notel.7: Int(A U B)need not be equal to(IntA) U (Int A)

For,

InRwith usual metric,

letA = (0,1]and B = (1,2).AU B = (0,2).

~Int(AUB) = (0,2)

Now, IntA(0,1) and IntB = (1,2) and hence (IntA) U (IntA) = (0,2)-{2}.
~Int(AU B) # (IntA) v (Int A)

1.2.Subspace
Definition:

Let(M,d) be a metric space. Let M; be a nonempty subset of M. Then M, is also a metric
space under the same metric d. We call (M, d) is a subspace of (M, d).

Theorem1.8Let M be a metric space and M; a subspace of M. Let A € M;. Then A, is open in
M, if and only if A; = A n M; where A is open in M.

Page 9 of 47



REAL ANALYSIS I

STUDY MATERIAL FOR B.SC. MATHEMATICS

SEMESTER -V, ACADEMIC YEAR 2020 - 21

Proof:

Let M, be a subspace of M. Leta € M;.

Let M;(a,r) be the open ball in M; with center a and radius r.

Then By(a,r) = B(a,r) N M;where B(a,r) is the open ball in M with center a and radius r.

Then By(a,r) = {x € M;/d(a,x) <r}.
Also, B(a,r) ={x € M/d(a,x) <r}.
Hence,B;(a,r) = B(a,r) N M;.
Let A; be an open set in M.
Then,
A; = Bi(x,r(x))
= Uxea, [B(x,7(x)) N M,]
=[Uxea, BGer()] N M,y
=ANM,;
Where A= Uyeqa, B(x,7r(x))which is open in M.

Conversely, let A = G N M, where G is open in M.
We shall prove that A, is open inM.

Let x € A;.

Thenx € Aand x € M.

Since A is open in M, there exists an open ball B(x,r) such that B(x,r)SA.

~ B(x,r)M; NS AN M,.
i.e. Bi(x, 1) € M.

~ Ajis openin M;.

1.2.Bounded Sets in a Metric space.

Definition:Let(M, d)be a metric space. A subset A of M is said to be bounded if there exists a

positive real number k such that d(x,y) < kV x,y € A.

Example:Any finite subset A of a metric space (M , d) is bounded. For,
Let A be any finite subset of M.
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If A = ¢ then A is obviously bounded.

Example:[0,1] is a bounded subset of R with usual metric since d(x,y) < 1for allx,y €
[0,1].

Example:(0, o) is an unbounded subset of R.

Example:Any subset A of a discrete metric space M is bounded since

d(x,y) <1 forallx,y € A.

Note:Every open ball B(x, ) in a metric space (M, d) is bounded.

Definition:Let(M, d) be a metric space and A € M. The diameter of 4, denoted by d(4), is
defined by d(A) = L.u.b {d(x,y)/x,y € A}.

Example:InR with usual metric the diameter of any interval is equal to the length of the
interval. The diameter of [0,1] is 1.
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UNIT -1l
CLOSED SETS

2.1.ClosedSets

Definition: A subset A of a metric space M is said to be closed in M if its complement is open in
M.

Examples

1. In Rwith usual metric any closed interval [a, b] isclosed. For,

[a,b]* =R-[a,b] =(—o,a)VU (b, o).

(—o00,a)and(b, ) are open sets in R and hence (= ,a) U (b, o) is open inR.
i.e. [a,b]¢isopenin R.

~ [a,b]is openin R.

1. Any subset A of a discrete metric space M is closed since A¢is open as every subset of M
isopen.

Note. In any metric space M, ¢p and M are closed sets since ¢¢ = M and M¢ = ¢ which are
open in M. Thus ¢ and M are both open and closed in M.

Theorem 2.1.

In any metric space M, the union of a finite number of closed sets is closed.
Proof:

Let (M, d)be a Metric space.

Let Bla, ] be a closed ball in M.

Case (i) Suppose Bla,r|¢ = ¢

= Bla,r]¢is open and hence Bla,r] is closed.
Case (ii) Suppose Bla,r]¢ # ¢

Let x € Bla,T]°.

.~ x & Bla,r]°.

~d(a,x) >r

~d(a,x)—1r>0.
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Letr; =d(a,x)—r.

We claim that B(x,r{) € Bla,r]°.

Lety € B(x,1ry).

Thend(x,y) <ry = d(a,x) —r.
~d(a,x)>d(xy) +r.

Now, d(a,x) < d(a,y) + d(y, x).
d(a,y) >2d(a,x)—d(y, x).
>d(x,y)+r—d(y x).

=r.

Thus,d(a,y) > r.

.~y & Bla,r].

Hence y € Bla,r]°.

~ B(x,r{) € Bla,r]".

= Bla, r]¢s openin M.

. Bla,r]is closed in M.

Theorem 2.2

In any metric space M, arbitary intersection of closed sets is closed.

Proof:

Let (M, d) be a metric space.

Let{A;/i € I}be a family of closed sets in M.

We have to prove ;¢ 4; is closed.

Wehave(Ne; A = Ujer A
(byDeMorgan’s law)

Since 4; is closed A;€ is open.

Hence U;¢; 4; isopen.
= (Nye; A;)Cis openin M.
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~N;er A; is closed in M.
Theorem 2.3

Let M; be a subspace of a metric space M. Let F; € M,. Then F; is closed in M; if and only if
F; = F N M; where F is a closed setin M.

Proof.

Suppose that Fis closed in M,.
Then M, - F; is open inMj,.
& M- F; = A° N M;whereA is openin M.

Now, F; = A N M;.

Since A is openin M, A€ is closed in M.

Thus, F; = F N M;where F = A€ is closed in M.

Conversely, assume that F; = F N M; where F is closed in M.
Since F is closed in M, F€is openin M.

~F°N M, is openin M,.

Now, M;- F; = F¢ N M; which is open inM;.

=~ Fjis closed inMj.

Proof of the converse is similar.

2.1.Closure.

Definition:LetA be a subset of a metric space (M, d). The closure of A, denoted by A is defined
to be the intersection of all closed sets which contain A.

i.e. A=n{B/Bis closed in M and A € B}.
Note

(1) Since intersection of closed sets is closed, 4 is closedset.
(2) A;is the smallest closed set containingA.

(3) Ais closed & A =A.

Theorem 2.4:
Let (M, d) be a metric space. Let A,B € M. Then

()A€ B=>ACB

(lAUB=AUB
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(iYANB € ANB
Proof:
(i)letA € B,

Now, B 2 B 2 A.

Thus Bis a closed set containing A.

But A is the smallest closed set containing A.
~ACB.

(ii)we have A € A UB.

~A C AUB. (by(1)).

Similarly ,B € A U B.

~AUBCAUB (1)
Now, A is a closed set containing A and B is a closed set containing B.
~A U B is a closed set containing 4 U B.

But A U B is the smallest closed set containing A U B.

~AUBCAUB (2)
From (1) and (2) weget AUB = A UB.
(iilwehave ANB S 4

ANnB < 4 (byli)).

Similarly,ANB € B

~ANBCANB.

Note:A N B need not be equal to 4 N B.

2.1.Limit Point

Definition:Let (M, d)be a Metric space.Let A € M.Let x € M. Then x is called a limit point of A
if every open ball with centre x contains atleast one point of A differ from x.
(i.e)B(x,7) N (A—{x}) # ¢ for all r > 0. The set of all limit points of 4 is called the derived

set of A and is denoted by D(A)

Theorem 2.4

Let (M, d) be a metric space and A € M. Then x is a limit point of A if and only if every open

ball with center x contains infinite number of points of A.
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Proof:

Let x be a limit point of A.

Suppose an open ball B(x,r) contains only a finite number of points of A.
B(x,7r) N (A—{x}) = {x1,x2, ..., X}

letr; = min{d(x,x;)/i=1,2,....,n}.

Since x # x;,d(x,x;) >0 foralli=1,2,...,nand hencer; > 0.
Also B(x,r) N (A — {x}) = ¢.

. Xis not a limit point of A which is a contradiction. Hence every ball with center x contains
infinite number of points of A.

The converse is obvious.
Corollary 1: Any finite subset of a metric space has no limit points.

Theorem 2.5

Let M be a metric space and A € M.then A = AU D(4).
Proof: Let x € A U D(A).we shall prove that x € A.
Supposex ¢ A.

. X € M — Aand since A is closed M — A is open.

= Thereexists an open ball B(x,7) S M — A.

~ B(x,1) NA=¢.

=~ B(x,1) N A = ¢. (since A C A).

x & A U D(A)which is a contradiction.

. X € A.

~ AUD(A) € A. Now let x € A. To prove x € AU D(A).
If x € Aclearly x € AU D(A).

Suppose x ¢ A. We claim that x € D(A).

Suppose x & D(A). Then there exists an open ball B(x, 1) such that B(x,r) N A = ¢.

. B(x,1)¢ 2 AandB(x,1)°¢ is closed.
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But 4 is the smallest closed set containing A.

~ A S B(x,1)°.

butx € A and x € B(x, )€ which is a contradiction.
Hence x € D(A).

~ x€AUD(A).

~AS AuD(4)

Hence ~. AU D(A) = A.

Corollary 1:A is closed iff A contains all its limit points.
(i.e.) Ais closed iff D(A) € A.

Proof:Aisclosed © A=A (bytheorem 2.13)

e A= AU D(A).

< D(A) c A.

Corollary2: x € A © B(x,r) N A # ¢forallr > 0.
Proof: let x € A,thenx € AU D(A).

~ x € Aor x € D(A).

Ifx € Athenx € B(x, 1) N A.

ifx € D(A) then B(x,r) N A # ¢ forallr > 0.
Hence in both cases B(x,r) N A # ¢forallr > 0.
Conversely Suppose B(x,r) N A #+ ¢forallr > 0.
We have to prove that, x € A.

If x € Atrivially x € A.

Letx € A. Then A — {x} = A.

~ B(x,r) N A—{x} +# ¢.

. x € D(A).

. X EA.
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Corollary 3:

XEASGNA+ ¢ for every open set Geontaining x.

Proof: Let x € A.

Let G be an open set containing x.then there exists r > 0 such that B(x,r) € G.
Also, since x € A,B(x,T) N A = ¢.

~ GNA# .

Conversely suppose G N A # ¢ for every open set Gcontaining x.

Since B(x, r)is an open set containing x,we have B(x,r) N A + ¢.
. x €A

2.1.Dense sets

Definition:A subset 4 of a metric space M is said to be dense in Mor every where dense if 4 =
M.

Definition: A metric space M is said to be separable if there exists a countable dense subset
in M.

Note :

(1) Any countable metric space is separable.
(2)Any uncountable discrete metric space is not separable.

Theorem 2.6:

Let M be a metric space and A € M.then the following are equivalent.
(i) Ais dense in M.

(ii) The only closed set which contains Ais M.

(iii) The only open set disjoint from Ais ¢.

(iv)  Aintersects every non empty open set.

(v) Aintersects every open ball.

Proof:

(i) = (ii).
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Suppose Ais dence in M.

Then A = M. (1)

Now, let F € Mbe closed set containing A.

Since A is a closed set containing A,we have 4 € F.

Hence M € F.(by (1))

~M=F.

Hence,The only closed set which contains 4 is M.

(i) = (iii)

Suppose (iii) is not true.

Then there exists a non emptyopensetB such that,BN A = ¢.
=~ B€is z closed set and B¢ 2 A.

Further, since B # ¢ we have B¢ #+ M which is a contradiction to (ii).
Hence (ii))=(iii).

Obviously, (iii)=(iv).

(iv)=(v),since every open ball is an openset.

(iv) =(i)

Let x € M. Suppose every open ball B(x, r)intersects A.

Then by corollary, x € A.

.~ M € A. But trivially A € M.

~A=M.

~ Aisdensein M.

2.2.Completeness

Definition: let (M, d) ba a metric space. Let (x,, = x4, X3, ...., X, ... ) be a sequence of points in

M. Let x € M. We say that (x;,) converges to x if given £ >0 there exists a positive integer n,
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such that d(x,,, x) < e foralln > ny.Also x is called a limit of (x;,,).

If (x,,) converges to x we write lim x,, = xor (x,,) — x.
n—0oo

Note 1:(x,) — x iff for each open ball B(x, €) with cebtre x there exists a positive integer n,
such that x,, € B(x, ) foralln = n,.

Thus the open ball B(x, €) contains all but a finite number of terms of the sequence.

Note 2:(x,,) — x iff the sequence of real numbers d((xn, x)) - 0.

Theorem?2.6:

For a convergent sequence (x,,) the limit is unique.

Proof: Suppose (x,,) — xand (x,) - y.

Let € > 0 be given. Then there exist positive integers nyand n, such that
d(x,,x) < %sfor alln = njand d(x,,y) < %sfor alln > n,.

Let for all m be a positive integer such that for all m = nq, n,.
Thend(x,y) < d(x,x,,) + d(x,,, y)

<je+zE==¢.

~dlx,y) <e.

Since € > 0 is arbitary d(x,y) = 0.

LX =Y.

Theorem?2.7:
let M be a metric spaceand A € M. Then
(vi)  x € Aiff there exists a sequence (x,,) in 4 such that (x,,) — x.

(vii)  xis a limit point of A iff there exists a sequence (x,,) of distinct points in 4 such that
(xn) - x.

Proof:

Let x € A.
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Then,x e AUD(A) (by theorem)

~ X € Aorx € D(A)

If x € A, then the constant sequencex, x, ... .... Is a sequence in 4 converging to x.

If x € D(A) then the open ball B(x,1/n) contains infinite number of points of A (by theorem)
= We can choose x,, € B(x,1/n) N A such that x,, # x4, X5, ...., X,_1 foreach n.

~ (x5)is a sequence of distinct points in A. Also d(x,,, x) < ifor all n.

chl_)To d(x,, x)=0.

= (x,) = x.

Conversely, suppose there exists a sequence (x,,)in4 such that (x,,) = x

Then for any r > 0 there exists a positive integer ny such that d(x,,, x) < r forall n = n,,.
~ Xp € B(x,r)forall n = n,.

~Bx,r)NA+*¢

. x €A (by corollary 2)

Further if (x,,) is a sequence of distinct points, B(x,r) N A is infinite.

~ x € D(A).

-~ xis a limit point of A.

Definition: Let (M, d) be a metric space. let(x,,) be a sequence of points in M.(x,,)is said to be
a caushy sequence in M if given € > 0 there exists a positive integer ng such that d(x,,, x,) <
gforallm,n > n,.

Theorem 2.7:

Let (M, d) be a metric space. Then any convergent sequence in M is a Cauchy sequence.
Proof:

Let (x;,) be a convergent sequence of points in M converging to x € M.

Let € > 0 be given.
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. o 1
Then there exists a positive integer ng such that (x,,, x) < S € for alln = ny.
Therefore, d(x,,, x,;,) < d(x,, x) + d(x, x,,)
1 1
< 7€ +E£forall m,n = n,.
= gforallm,n = n,.
oo d(xy, xy) < €. forallm,n = ny.
= (x,,)is a convergent sequence.
Note: The converse of the above theorem is not true.

Definition:A metric space M is said to be complete if every Caushy sequence in M converges to
a pointin M.

Theorem 2.8:
(Canton’s Intersection Theorem)

Let M be a metric space. Mis complete iff for every sequence (F,) of nonempty closed subsets
of M such that

F{2F; 2 2F,2-andd((F,)) — 0. N;,_-; Fuis nonempty.
Proof:

Let M be acomplete metric space.

Let (F,,) be a sequence of closed subsets of M such that
Fi2F,22F, 2 e (1)
andd((F,))—~»0. e (2)

we claim that . N;—; F,is nonempty.

For each positive integer n, choose a point x,, € F,,.

By (1), X5, Xpn+1, Xnt2, - allliesin F,,.

(i.e) x,, € Fyforallm = n. (3)

Since (d(F,)) — 0, given € > 0,there exists a positive integer ng, such that d(F,,) < & for all
n= ny.
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In particular d(Fno) < E. s (4)

~d(x,y) < gforall x,y € F,,.

Now,X;, € Fy, forallm = n,. (by(3))

SMN 2Ny = Xy, Xy € Fpy.

=>d(xm,x,) <& (by(4))

= (x,,)is a cauchy sequence in M.

Since M is complete there exists a point x € M such that (x,,) - x.
We claim that x € N,,=1 Fy.

Now, for any positive integer n, x,, X411, Xnt2, -~ 1S @ sequence in F,, and this sequence
converges to x.

~ x € E, (by theorem 3.2)

But F, is closed and hence F, = E,.

-~ x €E,.

5 X € Np=q1 Fy. Hence N2, F, # ¢.
Conversely let,(x,)is a cauchy sequence inM.

Let F; = {xq, x5, ... ... Xy ees )

Fo = {%n, Xn41, Xn42, - 3

Clearly F; 2 F, 2 -+ 2 F; 2 -

v

~F2F,22F,

= (E,)is a decreasing sequence of closed of closed sets.
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Now, since (x,,) is a Cauchy sequencegiven &€ > 0 there exists a positive integer ng, such that
d(x;, x,) < eforallm,n > n,.

~ For any integer n > n,, the distance between any two points of F,, is less than &.
.~ d(F,) < gforalln > n,

But d(F,) = d(F,).

~ d(F,) < gforalln > n, (5)
(d(F,) ~ 0.

Hence Ny, F,, is nonempty

Letx € Ny, Fp. Thenxand x,, € F,,

s d(xy, x) < d(Fy).

o d(x,, x) < eforall n = ny (by(5))

~ (xn) o x.

~ Mis complete.

Note:1 In the above theorem N;_; F, contains exactly one point.

Note: 2In the above theorem N, F,, may be empty if each F, is not closed.

Note:3 In the above theorem N, F, may be empty if the hypothesis (d(F,)) — Ois
omitted.

Definition: A subset of a metric space M is said to be nowhere dense in Mif Int A = ¢.

Definition:A subset of a metric space M is said to be of first category in M if A can be
expressed as a countable union of nowhere dense sets.

A set which is not of first category is said to be of second category.

Theorem?2.9:(Baire’s Category Theorem)

Any complete metric space is of second category.
Proof: Let M be a complete metric space.
Claim:M is not of first category.

Since M is open and A; is nowhere dense,there exists an open ball say B, of radius less than 1
such that By is disjoint from A;. (refer theorem 3.6)

Let F; denote the concentric closed ball whose radius is %times that of B;.
Now, Int F; is open and A, is nowhere dense.

=~ Int F;contains an open ball B, of radius less than % such that B, is disjoint from A,.
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Let F, be a concentric closed ball whose radius is %times that of B,. Now Int F, is open and

Az is nowhere dense.

=~ Int F,contains an open ball B of radius less than i such that B, is disjoint from As;.

Let F3 be a concentric closed ball whose radius is %times that of B;.

Proceeding like this we get a sequence of nonempty closed balls F, such that F; 2 F, 2 --- 2
E, 2 --and d(E,) < zin

Hence (d(F,)) — Oasn — oo,

Since M is complete, by Contor’s intersection theorem,there exists a point x in M such that
X € Np=q By

Also each E, is disjoint from A,,.

Hence, x € F, foralln.

~x € UpzqiAp.

% Unpz1 Ay # M. Hence M is of second category.

Corollary:R is of second category.
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UNIT - 111
COUNTINUITY

Definition:let(M,, d,) and (M,, d,) be metric spaces.

Let f: M; = M, be a function. Let a € M;and | € M,. The function f is said to have a limit as
x — aif given € > 0, there exists § > 0 such that,

0<di(x,a) <é6=>d,(f(x),D)<e.

We write lim f(x) = L.
xX—a

Definition:Let(M,,d;) and (M,,d,) be metric spaces.Let a € M;.A function f:M; > M, is
said to be continuous at a if given € > 0, there exists § > 0 such that,

di(x,a) <8 = dy(f(x),f(a)) < e.

fis said to be continuous if its continuous at every point of M;.

Note:1f is continuous at a iff chl_r)rtll f(x) = f(a).

Note:2The condition d,(x,a) < § = d,(f(x), f(a)) < € can be rewritten as
(i) x € B(x,6) = f(x) € B(f(a),¢) or
(i) f(B(a,8)) € B(f(a)e).

Theorem 3.1:

Let (M,,d,) and (M,,d,) be metric spaces.Let a € M;. A function f: M; —» M, is continuous
ataiff (x,) > a> (f(xn)) — f(a).

Proof: Suppose f is continuous at a.

Let (x,,) be a sequence in M, such that (x,) - a.

Claim:(f(xn)) — f(a).

Let € > 0 be given. By definition of continuity, there exists § > 0 such that,

di(x,a) <8 =d,(f(x),f(a)) <e. (1)

Since (x,) — a, there exists a positive integer n, such that d; (x,,,a) < § foralln > n,.
s~ dy(f(x), f(a)) < gforalln > n,. (by(1))

= (fl) = f(@).

Conversely, suppose (x,) = a = (f(xn)) — f(a).
Claim:f is continuous at a.

Suppose f is not continuous at a. Then there exists an € > 0 such that for all § > 0,

f(B(a,8)) & B(f(a),¢)
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In particular, f (B (a, %)) ¢ B(f(a),¢).
Choose x,, such that x,, € B (a, %)and (xn) € B(f(a), ).

ody(xpy,a) < % and d,(f(x),f(a)) = ¢.

(xy) — aand(f(xn)) not converges to f(a) which is a contradiction to the hypothesis.
Hence, f is continuous at a.

Corollary 1:A function f: M; — M, is continuous at a iff (x,) - x = (f(xn)) — f(x).

Theorem 3.2:

Let (M, d;) and (M,,d,) be metric spaces. f: M; — M,is continuous iff f 71 (G) is open in M,
whenever G is open in M,.

(i.e) f is continuous iff inverse image of every open set is open.

Proof:

Suppose f is continuous

Let G ba an opeb set in M,.

Claim:f ~1(G) is open in M,.

Iff ~1(G) is empty, then it is open. Let f71(G) # ¢.

Let x € f~1(G). Hence f(x) € G.

Since G is open, there exists an open ball B(f(x), €) such that B(f(x),€) € G.
Now, by definition of continuity, there exists an open ball B(x,d) such that f(B(x, 6)) c
B(f (x), ).

« f(B(x,8)) € G (by(1))

~B(x,8) € f71(G)

Since x € f~1(G) is arbitrary, f~1(G) is open.

Conversely, suppose f~1(G) is open in M; whenever G is openin M,.
we claim that f is continuous.

Let x € M;.

Now, B(f(x), &) is an open set in M,.

s fTYB(f(x), €)is openin My and x € f~1(B(f(x), ).

Therefore there exists § > 0 such that B(x, §) € f~1(B(f (x), ¢).
f(B(x, 6)) c (B(f(x),e).

=~ fis continuous at x.

Since x € M, is arbitrary f is continuous.
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Theorem 3.3:

Let (M;,d,) and (M,,d,) be two metric spaces. A function f: M; - M, is continuous iff
f~Y(F) is closed in M; whenever F is closed in M.

Proof: Suppose f: M; = M, is continuous.
Let F € M, be closed in M,.
=~ FCis openin M,.
o fL(F©)is open in M;.
Conversely, suppose f~1(F) is closed in M; whenever F is closed in M,.
We claim that f is continuous.
Let G be an open set in M,.
~ GCis openin M,.
o fH(GO)is closed in M;.
s [f7H(G)]¢is closed in M;.
- f7Y(G)is open in M;.

=~ fis continuous.

Theorem 3.4:

Let (M,d;) and (M,,d,) be two metric spaces. A function f: M; —» M, is continuous iff
f(A) € f(A)forall A S M,.

Proof:

Suppose f is continuous.

Let A € M,. Then f(4) < M,.

Since f is continuous, f‘l(m) is closed in M.
Also f~1(£(4)) 2 A (since f(4) 2 f(A))

But A is the smallest closed set containing A.
»Ac f(fA)

~ f(A) € f(A).

Conversely, let f(A) € f(A) forall A € M.

To prove:f is continuous.

We shall show that if F is a closed set in M,, then f~1(F) is closed in M.

By hypothesis, f(f~1(F)) € ff~1(F)
cF.
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= F. (sinceF is closed.)
Thus f(f~*(F)) S F.
»(FI) € f71(F)
Also f~1(F) < (F1(F)).
fHF) = fH(E).

Hence f~1(F) is closed.

=~ fis continuous.

3.2Homeomorphism

Definition: Let Let(M;,d,) and (M,,d,) be two metric spaces. A function f:M; —» M, is
called a homeomorphism if

(i) fis 1-1 and onto.

(ii) fis continuous.

(iii)  f~tis continuous.

M;andM; are said to be homeomorphic if there exists a homeomorphismf: M; — M,.

Definition: A function f: M; —» M, is said to be an open map if f(G) is open in M, for every
open set Gin M;.

(ie) f is an open map if the image of an open set in M, is an openset in M,.
fis called a closedmap if f(F) is closed in M, for every closed set F in M;.
Note:Letf: M; — M, be a 1-1 onto function. Then f 1 is continuous iff f is an open map.
For, f 1 is continuous iff for any open set G in M;(f~1)~1(G) is open in M,.
But, (f71)71(G) = f(G).
=~ f~tis continuous iff for every open set G in My, f(G) is open in M,.
= f~Lis continuous iff f is an open map.
Note: Similarly f~1 is continuous iff f is a closed map.
Note:Letf: M; — M, be a 1-1 onto map. Then the following are equivalent.
(i) fis homeomorphism.
(ii) fis continuous open map.
(iii) fis continuous closed map.
Proof:
(i) (ii) follows from Notel and the definition of homeomorphism.
(i)) = (iii) follows from Note2 and the definition of homeomorphism.

Note: Let f: M; - M, be a homeomorphism. G S M,is open in M, iff f(G) is open in M,.
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Note:Letf: M; - M, be a 1-1 onto map. Then f is a homeomorphism iff it satisfies the
following condition.

Fis closed in M, iff f(F)is closedin M,.

3.3 Uniform Continuity

Definition : Let(M,,d;) and (M,, d,) be two metric spaces. A function f: M; — M, is said to
be uniformly continuous on M; if given > 0, there exists § > 0 such that,

di(x,y) <8 =d(f(x), f(¥)) <e.

Problem 3.5: Prove that f: [0,1] — R defined by f(x) = x2 is uniformly continuous on [0,1].
Solution:

Let € > 0 be given. Let x,y € [0,1].

Then |f(x) — fFOI = |x* = y?| = |x + yllx -yl

<2|lx—y| (sincex<landy<1)

slx—yl<se=If(0) - fO)l <e

= f is uniformly continuous on[0,1].

Problem 3.6: Prove that the function f:R — R defined by f(x) = sinx is uniformly
continuous on R.

Solution:

Letx,y € Rand x > y.

sinx — siny = (x — y)cos zwherex >z >y (by mean value theorem)
o |sin x — siny| = |x — y||cos z|

< |x—yl| (since |cos z| < 1).

Hence for a given >0 , we choose § =¢, we have [x—y|<d=|f(x) - f(y)|=
|sinx —siny| < ¢.

. f(x) = sin x is uniformly continuous on R.

3.4 Discontinuous funtionsonr

Definition: A function f: R — R is said to approach to a limitl as x tends to a if given > 0,
there exists 6 > 0 such that

0<|x—al<é§=|f(x)—1| <eand we write lim f(x) = [.
x—a

Definition: A function f is that to have [ as the right limit at x = a if given € > 0, there exists
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§ >0suchthata<x <a+ 46 = |f(x)—l| < eand we write lim+f(x) =1
x—a

Also we denote the right limit lby f(a +).
A function f is that to have [ as the left limit at x = a if given > 0, there exists § > 0 such
thata— 6 <x <a=|f(x)—1] < eandwe write lim f(x) =1l.
x—->a—

Also we denote the right limit lby f(a —).
Note:lim f(x) = liff lim f(x) = lim f(x) =1.

xXx—a x-a+ xX—a—
(i.e.) lim f(x) exists iff the left and right limits of f(x) at x = a exists and are equal.

x—a

Note: The definition of continuity of f at x = a can be formulated as follows.
fis continuous at at a iff f(a +) = f(a —) = f(a).

Note: If lim f(x) does not exists then one of the following happens.
xX—a

(i) lim f(x)does not exists.
x-a+

(ii) lim f(x)does not exists.
x-a—

(iii) lim f(x)and lim f(x) exist and are unequal.
xX—a— x-a+

Definition: If a function f is discontinuous at a then a is called a point of discontinuity for the
function.

If a is a point of discontinuity of a function then any one of the following cases arises.
(i) lim f (x)exists but is not equal to f(a).

x—a
(ii) lim f(x)and lim f(x) exist and are not equal.

xX—->a— x—->a+

(iii)  Either lim f(x)or lim f(x) does not exist.
Xx—a— x—-a+

Definition: let a be a point of disconitinuity for f(x). ais said to be a point of discontinuity of
the first kind if lim f(x) and lim+f(x) exist and both of them are finite and unequal.
xX—->a— x—a
ais said to be a point of discontinuity of the second kind if either lim f(x) or lim+ f(x) are
x->a— x—-a

does not exist.

Definition:Let A € R. Afunction f: A — R is called monotonic increasing if x,y € Aand x <
y=f) < fQ).
f is called monotonic decreasingif x,y € Aandx >y = f(x) = f(y).

fiis called monotonic if it is either monotonic increasing or monotonic decreasing.
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Theorem 3.7:

Let f:[a, b] — Rbe a monotionic increasing function. Then has a left limit and right limit at
every point (a,b). Also f has a right limit at a andf has a left limit at b. Further x<y =

fx+) < f(y-).

Similar result is true for monotonic decreasing function.

Proof:

Let f:[a, b] = R be a monotionic increasing function.

Let x€[a,b]. then { f(t)/a < t < x} is bounded above by f(x).
Letl =Lu.b{f(t)/a <t <x}

Claim: f(x—) = 1

Let € > 0 be given .By definition [. u. b there exists t suchthata <t < x and [-—e < f(t) <
l

Thereforet <u<x =21l—-e<f(t) <f(uw) <l

(since f is monotonic increasing)

>l—-e<f(w<l

s x—o0<u<x=>l—-&g< f(u) <lwhered =x—t
~f(x—) =1

Similarly we can prove that f(x+) = g.Lb{f(t)/x <t < b}
ToProve:x <y = f(x+) < f(y-)

Letx <y

Now,f(x+)=g.L.b{f(t)/x < t < b}

=g.Lb{f(t)/x <t <y}

(sincef is monotonic increasing)

Also, f(y—) =Lu.b{f(t)/a<t<y}
=Lu.b{f(t)/x<t<y}

fx+) <, f(y=)

The proof of monotonic decreasing function is similar.

Theorem 3.8:

Letf: [a, b] — R be a monotionic function. Then the set of points of [a,b] at which f is
discontinuous is countable.

Proof:

Let E={x/x € [a, b] and f is discontinuous at x}
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Let x € E. then by previous theorem,

f(x+)and f(x—) exists and f(x—) < f(x) < f(x+)
Iff(x=) = f(x+) then f(x—) = f(x) = f(x+)

= fis continuous at x which is a contradiction.

~ flx=) # f(xt)

“ F(=) < f(x)

Now choose a rational number 7(x) such that f(x—) < r(x) < f(x+).
This define a map r from E to Q which maps x to r(x).
Claim: ris 1-1

Let x; < x5

« f(x14) < f(x2 —) (by previous theorem)

Also, f(x1—) < 1(xy) = F(x1+)

And f(xz—) < 1(x3) = f(xa+).

v r(xg) < flxg )< f(xz =)< 1(x2).

Thus x1 < x5, = 1r(xq) < 71r(xy).

Therefore,r: E = Q is 1-1.Hence E is countable
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UNIT - IV
CONNECTEDNESS

Definition: Let (M, d) be a metric space. Mis said to be connected if M cannot be represented
as the union of two disjoint nonempty open sets.
If M is not connected it is to be disconnected.

Example: Let M = [1,2] U [3,4] with usual metric. Then M is disconnected.
Proof:

[1,2]and[3,4] are open in M.

Thus, M is the union of two disjoint nonempty open dets namely [1,2]and [3,4].
Hence M is disconnected.

Theorem 4.1:

Let (M, d) be a metric space. Then the following are equivalent.

i) M is connected.

i) M cannot be written as the union of two disjoint nonempty closed sets.
iii) M cannot be written as the union of two nonempty sets A and B suchthat AN B = AN
B = ¢.

iv) M and ¢ are the only sets which are both open and closed in M.
Proof:

(i)=(ii)

Suppose (ii) is true.

~ M =AU Bwheredand B areclosed A # ¢,B # p and AN B = ¢.
=~ A° = Band B¢ = A.

Since A and B are closed, A€ and B¢ are open.

. BandA are open.

Thus M is the union of two disjoint nonempty open sets.

~ Mis not connected which is a contradiction.

=~ (i)=(ii)

(ii)=(iii)

Suppose (iii) is not true.

ThenM = AUBwhere A # ¢,B + pandANB =ANB = ¢.
Claim: A and B are closed.

Let x € A.

~X&B (since ANB = ¢)
~x€EA (since AUB = M)
A C A.

But 4 C A.

. A = Aand hence A is closed.
Similarly B is closed.
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Now,ANB =AnNB. (since A = A).
= ¢.
Thus M = AU Bwhere A # ¢, B + ¢, A and B are closed and A N B = ¢ which is
contradiction to (ii).
(i) = iii)
(i) =(iv)
Suppose (iv) is not true.
Then there exists A € M such that A # M such that A # M and A # ¢ and A is both open and
closed.

Let B = A°.

Then B is also both open and closed and B # ¢.
AlsoM = AUB.

Further AN B = A n AC. (sinced = Aand A = A°)

= ¢.
Similarly AN B = ¢.
.~ M = AU BwhereA N B = ¢ = AN B which is a contradiction to (iii).
~(iii)=>(iv).
(iv)=(i).
Suppose M is not connected.
~M=AUBwhereAd # ¢,B # ¢,Aand B areopenand AN B = ¢.

Then B¢ = A.
Now, since B is open A is closed.
Also A +# ¢pand A + M. (since B # ¢)

-~ Ais a proper non empty subset of M which is both open and closed which is a contradiction to
(iv).
~ (iv))=(i).

Theorem 4.2

A metric space M is connected iff there does not exist a continuous function f from M onto the
discrete metric space {0,1}.

Proof: Suppose there exists a continuous function f from Monto {0,1}.

Since {0,1} is discrete,{0} and {1} are open.

~ A= f"1({0})andB = f~1({1}) are open in M.

Since f is onto, A and B are non empty.

ClearlyANB =¢gand AUB = M.

Thus M = A U B where A and B are disjoint nonempty open sets.

~ Mis not connected which is a contradiction.

Hence there does not exist a continuous function from onto the discrete metric space {0,1}.
Conversely, suppose M is not connected.

Then,there exists a disjoint nonempty open sets A and B in M suchthat M = A U B.
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Now, define f: M — {0,1} by f(x) = {g Z:;C g 1;1’

Clearly f is onto.

Also, f 1 (¢) = ¢, f 1 ({0}) = a, f~*({1}) = Band f~1({0,1}) = M.

Thus the inverse image of every open set in {0,1} is open in M.

Hence f is continuous.

Thus there exists a continuous function f from M onto {0,1}.which is a contradiction.

Hence M is not connected.

Problem 4.3:

Let M be a metric space. Let A be a connected subset of M. If B is a subset of of M such that
A S B C A then B is connected. In particular 4 is connected.

Solution: Suppose B is not connected.

Then B = B, U B, where B; # ¢,B, +# ¢, By N B, = ¢ and B; and B, are openin B.
Now, since B; and B, are open sets in B there exists open sets G; and G, in M such that B; =
G;NnBand B, = G, NB.

~B=B;UB,=(G;NB)U(G,NnB) =(G,UG,)NB.

~ B CGyUG,.

~ACGLUG, (since A € B)

~A=(G; UGy NA.

= (G, NA) U= (G, N A).

Now, G; N A and G, N A are open in A.

Further, (Gy N A) U (G, N A) = (G, U G,) N A.

=(G,UG,)NB (since A € B)

=(G,NnB)N(G,NB)

= B, N B,.

= ¢.

~(GLNA)U(G,NA) = ¢.

Now, since A is connected, either G, NA =@ or G, N A = ¢.

Without loss of generality let us assume that G; N A = ¢.

Since G, is open in M, we have G; N A = ¢.

~ G, NB=a. (since B € A)

~ By = ¢which is a contradiction.

Hence B is not connected.

4.2 Connected Subsets of R

Theorem 4.4:

A subspace of R is connected iff it is an interval.
Proof:

Let A be a connected subset of R.

SupposeA is not an interval.
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Then there exists a, b, ¢ € Rsuchthat,a < b <canda,c € Abutb & A.
Let A, = (—o,b) N Aand A, = (b, ) N A.

Since (—oo,b) and (b, ) are open in R, A; and A, are open sets in A.
Also, Ay N A, = ¢pand A; U A, = A.

Further a € A;and ¢ € A,.

Hence A; # ¢and A, # ¢.

Thus A is the union of two disjoint nonempty open sets A;and A,.

Hence A is not connected which is a contradiction.

Hence A is an interval.

Conversely, let A be an interval.

Claim:A is connected.

Suppose A is not connected.

Let A=A, UA,where A; # ¢,A, # p,A; N A, = ¢ and A; and A, are closed in A.
Choose x € Ajand z € A,.

Since A; N A, = ¢ we have x # z.

Without loss of generality let us assume that x < z.

Now, since A is an interval we have [x,z] € A.

(i.e) [x,z] € A; U A,.

=~ Every element of [x, z] is either in A; orin A,.

Now, lety = L. u.b.{[x,z] N A;}.

Clearlyx <y < z.

Hence y € A.

Let € > 0 be given. Then by the definition of L. u. b. there exists t € [x,z] N A; such that y —
e<t=<y.

~(y—gy+e)n([x,z]NA) # .

LYy E|[x,z]NA,;

LYy E|[x,z]NA,;

Sy E Ay

Again by the definition of y, y + ¢ € A, forall e > Osuchthaty + ¢ < z.
~yEA

LYEA, (sinceA, is closed)

~y € A; NA,[by(1) and (2) ] which is a contradiction since A; N A, = ¢.
Hence A is connected.

Theorem 4.5:

R is connected.

Proof:R = (—o0,) is an interval.
~ Ris connected.

4.3 Connectedeness and Continuity
Theorem 4.6:
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let M; be a connected metric space. Let M, be any metric space. Let f: M; - M, be a
continuous function. Then f(M,) is a connected subset of M,.

(i.e) Any continuous image of a connected set is connected.

Proof:

Let f(M,) = A sothat f is function on M;onto A.

Claim:A is connected.

Suppose A is not connected. Then there exists a proper non empty subset of B of A which is
both open and closed in A.

~ f~1(B)is a proper nonempty subset of M; which is both open and closed in M;.
Hence M, is not connected which is contradiction.

Hence A is connected.

Theorem 4.7:

let f be a real valued continuous function defined on an interval I. Then f takes every value
between any two values it assumes. (This is known as the intermediate value theorem)
Proof:

Leta,b € Iand f(a) # f(b).

Without loss of generality we assume that f(a) < f(b).

Let c be such that f(a) < ¢ < f(b).

The interval I is a connected subset of R.

~ f(Dis a connected subset of R.  (by theorem 4.6)

~ f(Dis aninterval. (bytheorem 4.6)

Also f(a), f(b) € f(I). Hence [f(a), f(D)] € f(I).

~c€f() (since f(a) <c < f(b))

~ ¢ = f(x)forsome x € I.

4.2 Compact Metric Spaces

Definition: Let M be a metric space. A family of opensets {G,} in M is called an open cover for
Mif U G, = M.

A subfamily of {G,} whichitself is an open cover is called a subcover.

A metric space M is said to be compact if every open cover for M has finite subcover.

(i.e) for each family of open sets {G,} such that U G, = M, there exists a finite subfamily
{Gay) Gays v oney G} such that Ui, Go, = M.

Theorem 4.8:

Let M be a metric space. Let A € M. Ais compact iff given a family of open sets {G,} in M such
that U G, 2 A there exists a subfamily

Gay» Gays e ey Ggsuch that UL, G, € A.

Proof:
Let A be a compact subset of M.
Let {G,} be a family of open sets in M such that U G, 2 A.
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Then (UG,) NA = A.
~U (G, NA) =A.
Also G, N A is open in A.
=~ The family {G, N A} is an open cover for A.
Since A is compact this open cover has a finite subcover, say,Go, N4, Gy, N4, ......., Gg, N A.
S Uie (G, NA) = A
# (ULy Gg) NA = A.
121G, S A.
Conversely let {H,} be an open cover for A.
~ Each H, is open in A.
~ Hy, = G, N AwhereG, is openin M.
Now, U H, = A.

~U (G, NA) = A.

~ (UG NA=A.

~U G, 2 A.

Hence by hypothesis there exists a finite subfamily G, Gq,, --- ...+, Gq,, such that UiL; G,, < A.

~(ULiGe) NA = A
?=1(G0li n A) = A.
‘{l=1 H(Xi = A.
Thus {Hg,, Hg,, e ..., Hg, } is @ finite subcover of the open cover {H,}.

~ Ais compact.

Theorem 4.9:

Any compact subset A of a metric space M is bounded.

Proof:

Let x, € A.

Consider {B(xy,n)|n € N}.

Clearly Ui, B(xq,n) = M.

s~ ULy B(xq,n) 2 A.

Since A is compact there exists a finite subfamily say, B(xy, 1), B(xg, 1), v o.. ... , B(xq,ny)
such that UX_, B(xy,n,) 2 A.

Let ny = max{n,,ny, ... ...., Ny }.

Then UK, B(xo,1;) = B(xg,np).

= B(xg,npy) 2 A.

We know that B(x(, ng) is a bounded set and a subset of a bounded set is bounded.
Hence A is bounded.

Theorem 4.10:

Any compact subset A of a metric space (M, d) is closed.

Proof:

To prove:A is closed.
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We shall prove that A€ is open.
lety € Aandletx € A.Thenx # y.
~d(x,y) =1, >0.

. o 1 1 _
It can be easily verified that B (x,;rx) NnB (y,;rx) = ¢.
Now consider the collection {B (x,%rx) /x € A}.
1
Clearly Uyes B (x,;rx) 2 A.
Since A is compact there exists a finite number of such open balls say,
1 1 1
B (xl,zrxl), ey B(n, S 1y,) such that Uiz B(x;, 5 7y,) 2 A ---memeees (1)
Now, letV, = N{L; B (y,%rx).

Clearly V, is an open set containing .

Since B (y,%ry) N (x,%rx) = ¢, we have I, N B(x,%rxi) = ¢ foreachi =12, .......

1
~Vn[ ?=1B(x,5rxi)] = ¢.
~V,NA=¢. (by (1)).
=V, € A
= Uyeac V), = A°and each 1, is open.
=~ ACis open. Hence A is closed.

Theorem 4.11:

A closed subspace of a compact metric space is compact.

Proof:

Let M be a compact metric space.

Let A be a nonempty closed subset of M.

Claim:A4 is compact.

Let {G,/ a € I} be a family of open sets in M such that, Uy¢; G, 2 A.
~ AU [Uael Ga] =M.

Also A€ is open. (sinceA is closed).

= {G,/a € I} U {A}is an open cover for M.

Since M is compact it has a finite subcover say, Gal, Gaz, - Gan,AC.
(UL, Gop) UA® = M.

Ul G, 2A.

-~ Ais compact.

4.3 Compact Subsets ofR.

Theorem 4.12: (Heine Borel Theorem)

Any closed interval [a, b] is a compact subset of R.

Proof:

Let {G,/ a € I} be a family of open sets in R such that U,¢; G, 2 [a, b].

Let S = {x|x € [a, b] and [a, x]can be covred by a finite number of G}s}.

Page 40 of 47



STUDY MATERIAL FOR B.SC. MATHEMATICS 3\
REAL ANALYSIS |1 $V 8
SEMESTER — V, ACADEMIC YEAR 2020-21 * ¢

Clearly a € S and hence S # ¢.

Also S is bounded above by b.

Let c denote the . u. b.of S.

Clearly ¢ € [a, b].

€ € Gg, forsome a; € I.

Since G, is open, there exists ¢ > 0 such that (c — €,¢c + &) C G, .
Choose x; € [a, b] such that x; < cand [x;,c] € G,

Now, since x; < ¢, [a, x;] can be covered by a finite number of G ,'s.
These finite number of G ,'s together with G, covers [a, c].

- By definition of S, c € S.

Now, we claim that ¢ = b.

Suppose ¢ # b.

Then choose x;, € [a, b] such that x, > cand [c, x;] € G, .

As before,[a, x,] can be covered by a finite number of G ,'s.

Hence x, € S.

But x, > ¢ which is a contradiction, since c is the l.u. b.of §.
~c=h.

= [a, b]can be covered by a finite number of G ,'s.

=~ [a, b]is a compact subset of R.

Theorem 4.13:

Asubset of R is compact iff A is closed and bounded.

Proof:

If A is compact then A is closed and bounded.

Conversely, let A be a subset of R which is closed and bounded.

Since A is bounded we can find a closed interval [a, b] such that A C [a, b].
Since A is closed in R, A is closed in [a, b] also.

Thus A is a closed subset of the compact space [a, b].

Hence A is compact. (by theorem 4.11)
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UNIT -V
RIEMAN INTEGRAL

If I is the integral of real number,the length of I is denoted by |I].
Set of measure Zero:
A subset E C R is said to be a measure Zero if for each € > 0, there exists a finite (or)
countable number of open intervals, I, I, ... .....such that E € U~ I,,.
?lellnl <&
Derivatives:
Let f be a real valued function defined on an Interval [a, b] € R. It is derivable at an interior
point ¢ € (a,b).
(i) If lim% exists.

X—C
}lln’é Mexists.
Wherex =c+h—->x—c=h.
(ii) lim £& ; ]Cc( [D-J)is called the left hand derivative = Lf'(c).
X—C
(i)  lim f(xz ) is called the right hand derivative = Rf'(c)
X—C -

(iv)  Iff'(c) = Lf'(c) = Rf'(c) then we say f(x)is derivable.
v) flla)= llm f&@)-f@

xX—a

(vi) F1(b) = l f(x) f(b)

Example 1:
Show that the function f(x) = x?2 is derivable in [0,1].
Solution:
(i) Let x, € (0,1)
£(xo) = lim fx)— f(xo)

X—Xg X—Xo

x2%—x4?

= lim
xX—-xg X—Xo

— (x+x0)(x—x0).
X—Xq X=Xo

= lim (x +xg) = xg + xg = 2x,.
X—Xo

~derivable exists an interior point.
(i) f(0) = lim 2O

x—0t x—0

~ f'(0)exists.

Page 42 of 47



5. STUDY MATERIAL FOR B.SC. MATHEMATICS ﬁ
) REAL ANALYSIS I $V
SEMESTER — V, ACADEMIC YEAR 2020-21 ¥ ¢

s ' — i FOO=F(D)
(i) f(0) = lim FOD,

x%2-1

= lim .
x-f x—1

x-f (x-1)
=limx+1)=1+1=2.
x=f

o f'(Dexists.
Hence f(x) is differentiable in the closed interval (0,1).

Example 2:
. . . _(xif0<x<1
A function f is defined on R where f(x) = { lifx>1

Solution:
' e fFOO-FD)
L=

~Lf'(1) =1.
I} T F(x)=f(1)
RFT(1) = lim =
1-1

x-1t x—-1"
= 0.
~Rf'(1)=0.
Lf'(1) # Rf'(1).
(i.e.) f'(1) does not exists.
fis not derivable at x = 1.

Example 3:
Discuss the derivability of f(x) at 0, f(x) = |x|.
Solution:

x-0" x—=0
-x—0

Lf'(0) = —1.

, . —f(0
Rf'(0) = xll)r(?+ —f(x;_};( ).

. Discuss the derivability at x = 1.
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~Rf'(1) =1.

Lf'(1) = Rf' (D).

(i.e.) f'(0) does not exists.
fis not derivable at x = 0.

Example 4:
1
x?sinx=if x #0
f(x) ={ T x f :
0ifx=0
Prove that f is derivable at x = Obut lirr(l)f’(x) + f'(0).
X—

Solution:
' i SOO-F(D)
Lf(0) = xlirgl— x=0

L1
x2 sin=—0
X

= lim
x—0" X

.oox2 .1

= lim =sin -

x—>0" X X

. L1
= lim sin-=0.
x—>0~ 0

Lf'(0) = 0.
I} 1 f(x)—-£(0)
RO ="

x—=0

2

L1
x“ sin=—0
X

x—0t x—=0
= lim x2 sin-.
x—-0% x
= lim sinl
x>0t 0
~Rf'(1) =0.
Lf'(1) = Rf'(1).

Hence f is not derivable at x = 0.

Theorem:

A function which is derivable at a point is necessarily continuous at that point.

Proof:
Let a function f be derivable at x = c.
f)=f(e)
C

Then lim ——— exist.
X—=C X—

To prove: f is continuous atx = c.f(x) — f(c) = % X (x—c¢)

lim[f(x) = £(©)] = limFETE (x - o)),
= [lim 22 flim(x - )]
lim(f(x) - £(c)] = 0.
}Ci_r)rgf(x) - }Ci_r)rgf(c) = 0.

lim £(x) = lim f(c).
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}ci_r)rgf(x) = f(c).

=~ fis continuous in x = c.

Note:

Converse of this theorem need not be true.

Rolle’s theorem:
If a function f defined on [a, b] s,
(i) Continuous on [a, b].
(ii) Derivable on (a, b).
(iii)  f(a) = f(b)then there exists one real number ¢ between a X b[a < ¢ < b] such that
f'(c) =0.
Proof:
Since the function is continuous on [a, b], it is bounded.
Let m and M are the infremum (g.l.b) and supremum (l.u.b) respectively of the function f then
there exists points ¢ and d in [a, b] such that f(c¢) = mand f(d) = M.
Case (i):
Let m = M, then f is constant.
f(x) =M for all x € [a, b].
o~ f(x) =0 forall x € [a,b].
Forc € (a,b), f(c) = m, thatis f'(c) = 0 for all c € (a,b).
Case (ii):
Letm = M.
Now both m and M cannot be equal to f(a).
fc)=m=f(a)=c #a.
Similarly, f(c) =M # f(b) = ¢ # b.
= c € (a,b).
Claim: f'(¢) = 0.
If f'(c) < 0,there exists (c,c + 8;) such that f(x) < f(c) =M for all x,x € (c,c + &,).
Which is a contradiction.
If f'(c) > 0,there exists (c — 6, ¢) such that f(x) < f(c) =M for all x,x € (c — §,¢).
Which is a contradiction.
Hence,f'(c) = 0.

Legrange’s Mean Value Theorem

If a function f defined on [a, b] is,

(i) Continuous on [a, b].

(i) Derivable on (a, b).

f(a) = f(b)then there exists one real number c between a X b[a < ¢ < b] such that f'(c) =

f(b)—f(a)
b-a
Proof:
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Let p(x) = f(x) + Ax where A is a constant such that ¢p(a) = ¢(b).
Then f(a) + Aa = f(b) + Ab.
A(b —a) = f(a) — f(b).

=—[f) - f(a)]
2 = “F®-r@1

b—a
Since ¢(x) is a sum of two continuous and derivable function.
(i) ¢is continuous on [a, b].

(ii) ¢is derivable on [a, b].

(i)  ¢p(a) = p(b).

Therefore by Rolle’s theorem, there exists ¢ € (a, b) such that ¢'(¢) = 0.
(ie) f'(c)+A=0.

f'(c) = —A.
fre) = [0L@

Cauchy’s Mean Value Theorem:

If two functions f, g defined on [a, b] are

(i) Continuous on [a, b].

(ii) Derivable on [a, b].

(i)  g'(x) # 0 forany x € (a, b) then there exists one real number ¢ between a and b such

f)—f@ _ f'©
gb)-gla) g'(c)

that

The Fundamental Theorem of Calculus:

A function f is bounded and integrable on [a, b] and there exists a function f such that f' =
f on[a,b]. Then f;f dx = f(b) — f(a).

Proof:

Given € > 0. There exists § > 0 such that for every partition P where,

P={a=xq,X1, e, Xn_1,Xn = b}.

With norm u(P) — & (where u(P) = maxAx;).

| >, f(t) Ax; — f:f dx| < e.[sincet; € (x;_1,x)] .

=30, f(E) Ax; = [, f dx. (1)
Fx)-f(xi-1) — f(tl)

By Lagrange’s Mean value Theorem,
Xi—X;
i -1

coy FeD—f(xig) .
(i.e). Ar; = f(ty).

= f(x) — f(xi-q) = f(t)Ax;. (2)
Using (2) in (1) we get,

[2f dx = Y[ — f (o)),
[ f dx = F(b) - F(a).
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	Proof: (1)
	Let ,𝑴,𝒅.be a Metric space.
	Let 𝑩,𝒂,𝒓. be a closed ball in 𝑴.
	Case (i) Suppose ,𝑩,𝒂,𝒓.-𝒄.=𝝓
	∴,𝑩,𝒂,𝒓.-𝒄.is open and hence 𝑩,𝒂,𝒓. is closed.
	Case (ii) Suppose ,𝑩,𝒂,𝒓.-𝒄.≠𝝓
	Let 𝒙∈,𝑩,𝒂,𝒓.-𝒄..
	∴𝒙∉,𝑩,𝒂,𝒓.-𝒄..
	∴𝒅(𝒂,𝒙)>𝒓
	∴𝒅(𝒂,𝒙)−𝒓>𝟎.
	Let ,𝒓-𝟏.=𝒅(𝒂,𝒙)−𝒓.
	We claim that 𝑩,𝒙,,𝒓-𝟏..⊆,𝑩,𝒂,𝒓.-𝒄..
	Let 𝒚∈ 𝑩,𝒙,,𝒓-𝟏...
	Then 𝒅,𝒙,𝒚.<,𝒓-𝟏.= 𝒅(𝒂,𝒙)−𝒓.
	∴𝒅(𝒂,𝒙)>𝒅(𝒙,𝒚)+𝒓.
	Now, 𝒅(𝒂,𝒙)≤𝒅(𝒂,𝒚)+𝒅(𝒚,𝒙).
	𝒅(𝒂,𝒚)≥𝒅(𝒂,𝒙)−𝒅(𝒚,𝒙).
	>𝒅(𝒙,𝒚)+𝒓−𝒅(𝒚,𝒙).
	=𝒓.
	Thus , 𝒅(𝒂,𝒚)>𝒓.
	∴𝒚∉𝑩,𝒂,𝒓..
	Hence 𝒚∈𝑩,,𝒂,𝒓.-𝒄..
	∴𝑩,𝒙,,𝒓-𝟏..⊆,𝑩,𝒂,𝒓.-𝒄..
	∴,𝑩,𝒂,𝒓.-𝒄.is open in 𝑴.
	∴ 𝑩,𝒂,𝒓.is closed in 𝑴.
	Proof: (2)
	Let ,𝑴,𝒅. be a metric space.
	Let,,𝑨-𝒊./𝒊∈𝑰.be a family of closed sets in 𝑴.
	Proof. (6)
	Note
	Proof: (3)
	(i)let𝑨⊆𝑩,
	Proof: (4)
	Let 𝒙 be a limit point of 𝑨.
	Suppose an open ball 𝑩,𝒙,𝒓. contains only a finite number of points of 𝑨.
	𝑩,𝒙,𝒓.∩,𝑨−,𝒙..=,,𝒙-𝟏.,,𝒙-𝟐.,…..,,𝒙-𝒏..
	let ,𝒓-𝟏.=𝒎𝒊𝒏,𝒅,𝒙,,𝒙-𝒊../𝒊=𝟏,𝟐,….,𝒏..
	Since 𝒙≠,𝒙-𝒊.,𝒅,𝒙,,𝒙-𝒊..>𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊=𝟏,𝟐,….,𝒏 and hence ,𝒓-𝟏.>𝟎.
	Also 𝑩,𝒙,𝒓.∩,𝑨−,𝒙..=𝝓.
	∴ 𝒙is not a limit point of A which is a contradiction. Hence every ball with center 𝒙 contains infinite number of points of 𝑨.
	The converse is obvious.
	Corollary 1:  Any finite subset of a metric space has no limit points.
	Theorem 2.5
	Let 𝑴 be a metric space and 𝑨⊆𝑴. then ,𝑨.=𝑨∪𝑫,𝑨..
	Proof: Let 𝒙∈𝑨∪𝑫,𝑨..we shall prove that 𝒙∈,𝑨..
	Suppose𝒙∉,𝑨..
	∴𝒙∈𝑴−,𝑨.and since ,𝑨. is closed 𝑴−,𝑨. is open.
	∴ Thereexists an open ball 𝑩,𝒙,𝒓.⊆𝑴−,𝑨..
	∴ 𝑩,𝒙,𝒓.∩,𝑨.=𝝓.
	∴ 𝑩,𝒙,𝒓.∩𝑨=𝝓. (since 𝑨⊆,𝑨.).
	𝒙∉𝑨∪𝑫,𝑨.which is a contradiction.
	∴𝒙∈,𝑨..
	∴ 𝑨∪𝑫,𝑨.⊆,𝑨.. Now let 𝒙∈,𝑨.. To prove 𝒙∈𝑨∪𝑫,𝑨..
	If 𝒙∈𝑨clearly 𝒙∈𝑨∪𝑫,𝑨..
	Suppose 𝒙∉𝑨. We claim that 𝒙∈𝑫,𝑨..
	Suppose 𝒙∉𝑫,𝑨.. Then there exists an open ball 𝑩,𝒙,𝒓. such that 𝑩,𝒙,𝒓.∩𝑨=𝝓.
	∴,𝑩,𝒙,𝒓.-𝒄.⊇𝑨and,𝑩,𝒙,𝒓.-𝒄. is closed.
	But ,𝑨. is the smallest closed set containing A.
	∴,𝑨.⊆,𝑩,𝒙,𝒓.-𝒄..
	but𝒙∈,𝑨. and 𝒙∉,𝑩,𝒙,𝒓.-𝒄. which is a contradiction.
	Hence 𝒙∈ 𝑫,𝑨..
	∴ 𝒙∈𝑨∪𝑫,𝑨..
	∴ ,𝑨.⊆ 𝑨∪𝑫,𝑨.
	Hence ∴ 𝑨∪𝑫,𝑨.=,𝑨..
	Corollary 1:𝑨 is closed iff 𝑨 contains all its limit points.
	(i.e.) 𝑨 is closed iff 𝑫,𝑨.⊆𝑨.
	Proof:𝑨 is closed ⇔𝑨=,𝑨. (by theorem 2.13)
	⇔𝑨= 𝑨∪𝑫,𝑨..
	⇔ 𝑫,𝑨.⊆𝑨.
	Corollary 2: 𝒙∈,𝑨.⇔𝑩,𝒙,𝒓.∩𝑨≠𝝓for all𝒓>𝟎.
	Proof: let  𝒙∈,𝑨.,then𝒙∈𝑨∪𝑫,𝑨..
	∴ 𝒙∈𝑨 𝒐𝒓 𝒙∈𝑫,𝑨..
	If𝒙∈𝑨then 𝒙∈ 𝑩,𝒙,𝒓.∩𝑨.
	if𝒙∈𝑫,𝑨. then 𝑩,𝒙,𝒓.∩𝑨≠𝝓 for all 𝒓>𝟎.
	Hence in both cases 𝑩,𝒙,𝒓.∩𝑨≠𝝓for all 𝒓>𝟎.
	Conversely Suppose 𝑩,𝒙,𝒓.∩𝑨≠𝝓for all 𝒓>𝟎.
	We have to prove that, 𝒙∈,𝑨..
	If 𝒙∈𝑨trivially 𝒙∈,𝑨..
	Let 𝒙∉𝑨. Then 𝑨−{𝒙}=𝑨.
	∴ 𝑩,𝒙,𝒓.∩𝑨−{𝒙}≠𝝓.
	∴ 𝒙∈𝑫,𝑨..
	∴ 𝒙∈,𝑨..
	Corollary 3:
	𝒙∈,𝑨.⇔𝑮∩𝑨≠𝝓 for every open set 𝑮containing 𝒙.
	Proof: Let 𝒙∈,𝑨..
	Let 𝑮 be an open set containing 𝒙.then there exists 𝒓>𝟎 such that 𝑩,𝒙,𝒓.⊆𝑮.
	Also, since 𝒙∈,𝑨. ,𝑩,𝒙,𝒓.∩𝑨≠𝝓.
	∴ 𝑮∩𝑨≠𝝓.
	Conversely suppose 𝑮∩𝑨≠𝝓 for every open set 𝑮containing 𝒙.
	Since 𝑩,𝒙,𝒓.is an open set containing 𝒙,we have 𝑩,𝒙,𝒓.∩𝑨≠𝝓.
	∴ 𝒙∈,𝑨.. (1)
	2.1.Dense sets
	Definition:A subset 𝑨 of a metric space 𝑴 is said to be dense in 𝑴or every where dense if ,𝑨.=𝑴.
	Definition: A metric space 𝑴 is said to be separable if there exists a countable dense subset in 𝑴.
	Note :
	(1) Any countable metric space is separable.
	(2)Any uncountable discrete metric space is not separable.
	Theorem 2.6:
	Let 𝑴 be a metric space and 𝑨⊆𝑴.then the following are equivalent.
	(i) 𝑨is dense in 𝑴.
	(ii) The only closed set which contains 𝑨is 𝑴.
	(iii) The only open set disjoint from 𝑨is 𝝓.
	(iv) 𝑨 intersects every non empty open set.
	(v) 𝑨intersects every open ball.
	Proof: (5)
	(i)⇒(ii).
	Suppose 𝑨is dence in 𝑴.
	Then ,𝑨.=𝑴. -------------------------- (1)
	Now, let 𝑭⊆𝑴be closed set containing 𝑨.
	Since ,𝑨. is a closed set containing 𝑨,we have ,𝑨.⊆𝑭.
	Hence 𝑴⊆𝑭. (by (1))
	∴𝑴=𝑭.
	Hence,The only closed set which contains 𝑨 is 𝑴.
	(ii)⇒(iii)
	Suppose (iii) is not true.
	Then there exists a non emptyopenset𝑩 such that,𝑩∩𝑨=𝝓.
	∴,𝑩-𝒄.is z closed set and ,𝑩-𝒄.⊇𝑨.
	Further, since 𝑩≠𝝓 we have ,𝑩-𝒄.≠𝑴 which is a contradiction to (ii).
	Hence (ii))⇒(iii).
	Obviously, (iii)⇒(iv).
	(iv)⇒(v),since every open ball is an openset.
	(iv) ⇒(i)
	Let 𝒙∈𝑴. Suppose every open ball 𝑩,𝒙,𝒓.intersects 𝑨.
	Then by corollary,  𝒙∈,𝑨..
	∴𝑴⊆,𝑨.. But trivially ,𝑨.⊆𝑴.
	∴,𝑨.=𝑴.
	∴𝑨is dense in 𝑴.
	2.2.Completeness
	Definition: let ,𝑴,𝒅. ba a metric space. Let ,,𝒙-𝒏.=,𝒙-𝟏.,,𝒙-𝟐.,….,,𝒙-𝒏.…. be a sequence of points in 𝑴. Let 𝒙∈𝑴. We say that ,,𝒙-𝒏.. converges to 𝒙 if given 𝜺>0 there exists a positive integer ,𝒏-𝟎. such that 𝒅,,𝒙-𝒏.,𝒙.<𝜺 for ...
	If ,,𝒙-𝒏.. converges to 𝒙 we write ,,𝐥𝐢𝐦-𝒏→∞.-,𝒙-𝒏.=𝒙.or ,,𝒙-𝒏..→𝒙.
	Note 1:,,𝒙-𝒏..→𝒙 iff for each open ball 𝑩,𝒙,𝜺. with cebtre 𝒙 there exists a positive integer ,𝒏-𝟎. such that ,𝒙-𝒏.∈𝑩(𝒙,𝜺) for all 𝒏≥,𝒏-𝟎..
	Thus the open ball 𝑩(𝒙,𝜺) contains all but a finite number of terms of the sequence.
	Note 2:,,𝒙-𝒏..→𝒙 iff the sequence of real numbers 𝒅,,,𝒙-𝒏.,𝒙..→𝟎.
	Theorem2.6:
	For a convergent sequence ,,𝒙-𝒏.. the limit is unique.
	Proof:  Suppose ,,𝒙-𝒏..→𝒙and ,,𝒙-𝒏..→𝒚.
	Let 𝜺>𝟎 be given. Then there exist positive integers ,𝒏-𝟏.and ,𝒏-𝟐. such that
	𝒅,,𝒙-𝒏.,𝒙.<,𝟏-𝟐.𝜺for all 𝒏≥,𝒏-𝟏.and 𝒅,,𝒙-𝒏.,𝒚.<,𝟏-𝟐.𝜺 for all 𝒏≥,𝒏-𝟐..
	Let for all 𝒎 be a positive integer such that for all 𝒎≥,𝒏-𝟏.,,𝒏-𝟐..
	Then 𝒅,𝒙,𝒚.≤𝒅,𝒙,,𝒙-𝒎..+𝒅,,𝒙-𝒎.,𝒚.
	<,𝟏-𝟐.𝜺+,𝟏-𝟐.𝜺=𝜺.
	∴ 𝒅,𝒙,𝒚.<𝜺.
	Since 𝜺>𝟎 is arbitary 𝒅,𝒙,𝒚.=𝟎.
	∴𝒙=𝒚.
	Theorem2.7:
	let 𝑴 be a metric space and 𝑨⊆𝑴. Then
	(vi) 𝒙∈,𝑨.iff there exists a sequence (,𝒙-𝒏.) in 𝑨 such that ,,𝒙-𝒏..→𝒙.
	(vii) 𝒙is a limit point of 𝑨 iff there exists a sequence ,,𝒙-𝒏.. of distinct points in 𝑨 such that ,,𝒙-𝒏..→𝒙.
	Proof: (6)
	Let 𝒙∈,𝑨..
	Then, 𝒙∈𝑨∪𝑫(𝑨)  (by theorem)
	∴𝒙∈𝑨or𝒙∈𝑫(𝑨)
	If 𝒙∈𝑨, then the constant sequence𝒙,𝒙,……. Is a sequence in 𝑨 converging to 𝒙.
	If 𝒙∈𝑫(𝑨) then the open ball 𝑩(𝒙,𝟏/𝒏) contains infinite number of points of 𝑨  (by theorem)
	∴ We can choose ,𝒙-𝒏.∈ 𝑩(𝒙,𝟏/𝒏)∩𝑨 such that ,𝒙-𝒏.≠,𝒙-𝟏.,,𝒙-𝟐.,….,,𝒙-𝒏−𝟏. for each 𝒏.
	∴(,𝒙-𝒏.)is a sequence of distinct points in 𝑨. Also 𝒅(,𝒙-𝒏.,𝒙)<,𝟏-𝒏. for all 𝒏.
	∴,,𝐥𝐢𝐦-𝒙→∞.-𝒅(,𝒙-𝒏.,𝒙)=𝟎..
	∴,,𝒙-𝒏..→𝒙.
	Conversely, suppose there exists a sequence ,,𝒙-𝒏..in𝑨 such that ,,𝒙-𝒏..→𝒙
	Then for any 𝒓>𝟎 there exists a positive integer ,𝒏-𝟎. such that 𝒅(,𝒙-𝒏.,𝒙)<𝒓 for all 𝒏≥,𝒏-𝟎..
	∴,𝒙-𝒏.∈𝑩(𝒙,𝒓)for all 𝒏≥,𝒏-𝟎..
	∴𝑩(𝒙,𝒓)∩𝑨≠𝝓
	∴ 𝒙∈,𝑨.. (by corollary 2)
	Further if ,,𝒙-𝒏.. is a sequence of distinct points, 𝑩(𝒙,𝒓)∩𝑨 is infinite.
	∴𝒙∈𝑫(𝑨).
	∴𝒙is a limit point of 𝑨.
	Definition: Let (𝑴,𝒅) be a metric space. let,,𝒙-𝒏.. be a sequence of points in 𝑴.,,𝒙-𝒏..is said to be a caushy sequence in 𝑴 if given 𝜺>𝟎 there exists a positive integer ,𝒏-𝟎. such that 𝒅(,𝒙-𝒎.,,𝒙-𝒏.)<𝜺 for all 𝒎,𝒏≥,𝒏-𝟎..
	Theorem 2.7:
	Let  (𝑴,𝒅) be a metric space. Then any convergent sequence in M is a Cauchy sequence.
	Proof: (7)
	Let ,,𝒙-𝒏.. be a convergent sequence of points in 𝑴 converging to 𝒙∈𝑴.
	Let 𝜺>𝟎 be given.
	Then there exists a positive integer ,𝒏-𝟎. such that (,𝒙-𝒏.,𝒙)<,𝟏-𝟐.𝜺 for all 𝒏≥,𝒏-𝟎..
	Therefore, 𝒅,,𝒙-𝒏.,,𝒙-𝒎..≤𝒅,,𝒙-𝒏.,𝒙.+𝒅,𝒙,,𝒙-𝒎..
	<,𝟏-𝟐.𝜺+,𝟏-𝟐.𝜺for all 𝒎,𝒏≥,𝒏-𝟎..
	=𝜺for all 𝒎,𝒏≥,𝒏-𝟎..
	∴ 𝒅,,𝒙-𝒏.,,𝒙-𝒎..<𝜺. for all 𝒎,𝒏≥,𝒏-𝟎..
	∴,,𝒙-𝒏..is a convergent sequence.
	Note: The converse of the above theorem is not true.
	Definition:A metric space 𝑴 is said to be complete if every Caushy sequence in 𝑴 converges to a point in 𝑴.
	Theorem 2.8:
	(Canton’s Intersection Theorem)
	Let 𝑴 be a metric space. 𝑴is complete iff for every sequence ,,𝑭-𝒏.. of nonempty closed subsets of 𝑴 such that
	,𝑭-𝟏.⊇,𝑭-𝟐.⊇…⊇,𝑭-𝒏.⊇…and 𝒅(,,𝑭-𝒏..)→𝟎. ,𝒏=𝟏-∞-,𝑭-𝒏..is nonempty.
	Proof: (8)
	Let 𝑴 be acomplete metric space.
	Let ,,𝑭-𝒏.. be a sequence of closed subsets of 𝑴 such that
	,𝑭-𝟏.⊇,𝑭-𝟐.⊇…⊇,𝑭-𝒏.⊇…  ------------ (1)
	and 𝒅(,,𝑭-𝒏..)→𝟎.   ------------ (2)
	we claim that . ,𝒏=𝟏-∞-,𝑭-𝒏..is nonempty.
	For each positive integer 𝒏, choose a point ,𝒙-𝒏.∈,𝑭-𝒏..
	By (1), ,𝒙-𝒏.,,𝒙-𝒏+𝟏.,,𝒙-𝒏+𝟐.,….  all lies in ,𝑭-𝒏..
	(i.e) ,𝒙-𝒎.∈,𝑭-𝒏.for all 𝒎≥𝒏. ---------------------- (3)
	Since (𝒅,,𝑭-𝒏..)→𝟎, given 𝜺>𝟎,there exists a positive integer ,𝒏-𝟎., such that 𝒅,,𝑭-𝒏..<𝜺 for all 𝒏≥,𝒏-𝟎..
	In particular 𝒅,,𝑭-,𝒏-𝟎...<𝜺. ---------------- (4)
	∴𝒅,𝒙,𝒚.<𝜺for all 𝒙,𝒚∈,𝑭-𝒏..
	Now,,𝒙-𝒎.∈,𝑭-,𝒏-𝟎.. for all 𝒎≥,𝒏-𝟎.. (by(3))
	∴𝒎,𝒏≥,𝒏-𝟎.⇒,𝒙-𝒎.,,𝒙-𝒏.∈,𝑭-,𝒏-𝟎...
	⇒𝒅(,𝒙-𝒎.,,𝒙-𝒏.)<𝜺. (by(4))
	∴,,𝒙-𝒏..is a cauchy sequence in 𝑴.
	Since 𝑴 is complete there exists a point 𝒙∈𝑴 such that ,,𝒙-𝒏..→𝒙.
	We claim that 𝒙∈,𝒏=𝟏-,𝑭-𝒏...
	Now, for any positive integer 𝒏, ,𝒙-𝒏.,,𝒙-𝒏+𝟏.,,𝒙-𝒏+𝟐.,….   is a sequence in ,𝑭-𝒏. and this sequence converges to 𝒙.
	Now, since (,𝒙-𝒏.) is a Cauchy sequencegiven 𝜺>𝟎 there exists a positive integer ,𝒏-𝟎., such that 𝒅(,𝒙-𝒎.,,𝒙-𝒏.)<𝜺 for all 𝒎,𝒏≥,𝒏-𝟎..
	∴ For any integer 𝒏≥,𝒏-𝟎., the distance between any two points of ,𝑭-𝒏. is less than 𝜺.
	∴𝒅,,𝑭-𝒏..<𝜺for all 𝒏≥,𝒏-𝟎.
	But 𝒅,,𝑭-𝒏..=𝒅,,,𝑭-𝒏....
	∴𝒅,,,𝑭-𝒏...<𝜺for all 𝒏≥,𝒏-𝟎. ----------------------- (5)
	(𝒅,,,𝑭-𝒏...)→𝟎.
	Hence ,𝒏=𝟏-∞-,,𝑭-𝒏... is nonempty
	Let 𝒙∈,𝒏=𝟏-∞-,,𝑭-𝒏.... Then 𝒙 and ,𝒙-𝒏.∈,,𝑭-𝒏..
	∴𝒅,,𝒙-𝒏.,𝒙.≤𝒅(,,𝑭-𝒏..).
	∴𝐟(𝐱−) =𝐥
	Similarly we can prove that 𝒇(𝒙+) = 𝒈.𝒍.𝒃{𝒇(𝒕)/𝒙<𝒕≤𝒃}
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