

STUDY MATERIAL FOR B.SC. MATHEMATICS REAL ANALYSIS II SEMESTER – V, ACADEMIC YEAR 2020 - 21

UNIT	CONTENT	PAGE Nr
I	METRIC SPACES	02
II	CLOSED SETS	12
	CONTINUOUS FUNCTIONS ON METRIC SPACES	26
IV	CONNECTEDNESS AND COMPACTNESS	34
v	RIEMANN INTEGRAL	42

<u>UNIT - I</u> METRIC SPACES

Introduction

A Metric Space is a set equipped with a distance function, also called a metric, which enables us to measure the distance between two elements in the set.

1.1 Definition and Examples

Definition: A Metric Space is a non empty set M together with a function $d : M \times M \rightarrow R$ satisfying the following conditions.

- (i) $d(x, y) \ge 0$ for all $x, y \in M$
- (ii) d(x, y) = 0 if and only if x = y
- (iii) d(x, y) = d(y, x) for all $x, y \in M$
- (iv) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in M$ [Triangle Inequality]

d is called a **metric** or**distance function** on M and d(x, y) is called the distance between x and y in M. The metric space M with the metric d is denoted by (M, d) or simply by M when the underlying metric is clear from the context.

Example 1.

Let **R** be the set of all real numbers. Define a function $d: M \times M \to R$ by d(x, y) | x - y |. Then d is a metric on **R** called the usual metric on **R**.

Proof.

Let $x, y \in \mathbf{R}$.

Clearly $(x, y) = |x - y| \ge 0$. Moreover,

$$d(x, y) = 0 \quad \Leftrightarrow |x - y| = 0.$$

$$\Leftrightarrow x - y = 0.$$

$$\Leftrightarrow x = y$$

$$d(x, y) = |x - y|$$

$$= |y - x|$$

$$= d(y, x).$$

$$\therefore d(x, y) = d(y, x).$$

- Let $x, y, z \in \mathbf{R}$.
- d(x,z) = |x-z|
- = |x y + y z|
- $\leq |x y| + |y z|$

$$= d(x, y) + d(y, z).$$

- $\therefore d(x,z) \leq d(x,y) + d(y,z).$
- Hence d is a metric on R.

Note. When R is considered as a metric space without specifying its metric, it is the usual metric.

Example 2

Let M be any non-empty set. Define a function $d: M \times M \rightarrow R$ by

 $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ Then *d* is a metric on *M* called the discrete metric or trivial metric on *M*.

Proof.

Let $x, y \in M$.

Clearly $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$.

Also,
$$d(x, y) = \begin{cases} 0 & if \ x = y \\ 1 & if \ x \neq y \end{cases}$$

= d(y, x).

Let $x, y, z \in M$.

We shall prove that $d(x, z) \leq d(x, y) + d(y, z)$.

Case (i) Suppose x = y = z.

Then (x, z) = 0, d(x, y) = 0, d(y, z) = 0.

 $\therefore d(x,z) \leq d(x,y) + d(y,z).$

Case (ii) Suppose x = y and z distinct.

Then (x, z) = 1, d(x, y) = 0, d(y, z) = 1.

 $\therefore d(x,z) \leq d(x,y) + d(y,z).$

Case (iii) Suppose x = z and y distinct.

Then,

d(x,z) = 0, d(x,y) = 1, d(y,z) = 1. $\therefore d(x,z) \le d(x,y) + d(y,z).$

Case (iv) Suppose y = z and x distinct.

Then,

d(x,z) = 1, d(x,y) = 1, d(y,z) = 0. $\therefore d(x,z) \le d(x,y) + d(y,z).$

Case (v) Suppose $x \neq y \neq z$.

Then d(x, z) = 1, d(x, y) = 1, d(y, z) = 1.

$$\therefore d(x,z) \leq d(x,y) + d(y,z).$$

In all the cases,

 $d(x,z) \leq d(x,y) + d(y,z).$ Hence d is a metric on M.

1.2.Open Sets in aMetricSpace

Definition: Let (M, d) be a metric space. Let $a \in M$ and r be a positive real number. The open ball or the open sphere with center a and radiusr is denoted by $B_d(a,r)$ and is the subset of M defined by $B_d(a,r) = \{x \in M / d(a,x) < r\}$. We write B(a,r) for $B_d(a,r)$ if the metric d under consideration isclear.

Note. Since $(a, a) = 0 < r, a \in B_d (a, r)$.

Examples:

- 1. In **R** with usual metric B(a, r) = (a r, a + r).
- 2. In \mathbf{R}^2 with usual metric B(a,r) is the interior of the circle with center *a* and radius *r*.

Definition: Let (M, d) be a metric space. A subset A of M is said to be open in M if for each $x \in A$ there exists a real number r > 0 such that $B(x, r) \subseteq A$.

Note. By the definition of open set, it is clear that ϕ and M are open sets.

Examples:

1. Any open interval (a, b) is an open set in **R** with usual metric.

For,

Let $x \in (a, b)$.

Choose a real number r such that $0 < r \leq min \{ x - a, b - x \}$.

Then $B(x, r) \subseteq (a, b)$.

 \therefore (*a*, *b*) is open in *R*.

1. Every subset of a discrete metric space *M* isopen. For,

Let A be a subset of M.

If $A = \phi$, then A is open.

Otherwise, let $x \in A$.

Choose a real number r such that $0 < r \leq 1$. Then

 $B(x,r) = \{x\} \subseteq A$ and hence A is open.

2. Set of all rational numbers **Q** is not open in **R**. For,

```
Let x \in \boldsymbol{Q}.
```

For any real number r > 0, B(x, r) = (x - r, x + r) contains both rational and irrational numbers.

 $\therefore B(x,r) \not\subseteq Q$ and hence Q is not open.

Theorem 1.1

Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let B(a,r) be an open ball in M. Let $x \in B(a,r)$. Then d(a,x) < r.

Take $r_1 = r - d(a, x)$. Then $r_1 > 0$.

We claim that $B(x, r_1) \subseteq B(a, r)$.

Let $y \in B(x, r_1)$.

Then $(x, y) < r_1$.

Now,

- $d(a, y) \le d(a, x) + d(x, y)$ $< d(a, x) + r_1$ = d(a, x) + r - d(a, x) = r.
- $\therefore d(a, y) < r.$
- $\therefore y \in B(a, r).$
- $\therefore B(x,r1) \subseteq B(a,r).$
- Hence B(a, r) is an open ball.

Theorem1.2

In any metric space M, the union of open sets is open.

Proof.

Let (M, d) be a Metric Space.

Let $\{A_i / i \in I\}$ a family of open sets in M.

We have to prove $A = \bigcup A_i$ is open in M.

If $A = \phi$ then A is open.

 $\therefore \text{Let } A \neq \phi. \text{ Let } x \in A.$

Then $x \in A_i$ for some $\in I$.

Since A_i is open, there exists an open ball B(x, r) such that $B(x, r) \subseteq A_i$.

 $\therefore B(x,r) \subseteq A.$ Hence *A* is open in *M*.

Theorem 1.3

In any metric space M, the intersection of a finite number of open sets is open.

Proof:

Let A_1, A_2, \dots, A_n be open sets in M.

We have to prove $A = A_1 \cap A_2 \cap \dots \cap A_n$ is open in M.

If $A = \phi$ then A is open.

 $\therefore \text{Let } A \neq \phi. \text{ Let } x \in A.$ Then, $x \in A_i$ for each i = 1, 2, ..., n.

Since each A_i is open, there exists an open ball $B(x, r_i)$ such that $B(x, r_i) \subseteq A_i$.

Take $r = min \{ r_1, r_2, ..., r_n \}$. Clearly,r > 0 and $B(x, r) \subseteq B(x, r_i)$ for all i = 1, 2, ..., n.

Hence $B(x, r) \subseteq A_i$ for each i = 1, 2, ..., n.

 $\therefore B(x,r) \subseteq A.$

 \therefore A is open in M.

Theorem 1.4

Let (M, d) be a metric space and $A \subseteq M$. Then A is open in M if and only if A can be expressed as union of open balls.

Proof: Suppose that *A* is open in *M*.

Then for each $x \in A$ there exists an open ball $B(x, r_x)$ such that, $B(x, r_x) \subseteq A$.

$$A = \bigcup_{x \in A} B(x, r_x).$$

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls. Since open balls are open and union of open sets is open, A is open.

1.2 Interior of aset

DefinitionLet(M, d) be a metric space and $A \subseteq M$. A point $x \in A$ is said to be an interior point of A if there exists a real number r > 0 such that $B(x, r) \subseteq A$. The set of all interior points is called as interior of A and is denoted by **Int** A.

Note: Int $A \subseteq A$.

Example: In **R**with usual metric, let A = [1, 2]. 1 is not an interior points of A, since for any real number > 0, B(1, r) = (1 - r, 1 + r) contains real numbers less than 1. Similarly, 2 is also not an interior point of A. In fact every point of (1, 2) is a limit point of A. Hence **Int**A =

(1,2).

Note:

(1) Int $\phi = \phi$ and Int M = M. (2) *A* is open \Leftrightarrow Int A = A. (3) $A \subseteq B \Rightarrow$ Int $A \subseteq$ Int *B*.

Theorem1.5

Let (M, d) be a metric space and $A \subseteq M$. Then Int A = Union of all open sets contained in A.

Proof.

Let $G = \bigcup \{B/B \text{ is an open set contained in } A\}$

```
we have to prove Int A = G.
Let x \in Int A.
```

Then x is an interior point of A.

: there exists a real number r > 0 such that $B(x, r) \subseteq A$.

Since open balls are open, B(x, r) is an open set contained in A.

 $\therefore B(x,r) \subseteq G.$

 $\therefore x \in G.$

Let $\in G$.

Then there exists an open set B such that $B \subseteq A$ and $x \in B$.

Since B is open and $x \in B$, there exists a real number r > 0 such that $B(x, r) \subseteq B \subseteq A$.

- \therefore *x* is an interior point of *A*.
- $\therefore x \in Int A$.

 $\therefore \ G \subseteq IntA$ (2)

From (1) and (2), we get Int A = G. Note: *Int* A is an open set and it is the largest open set contained in A.

Theorem1.6

Let M be a metric space and A, $B \subseteq M$. Then

- (1) $Int (A \cap B) = (Int A) \cap (IntA)$
- (2) $Int (A \cup B) \supseteq (Int A) \cup (Int A)$

Proof.

 $(1)A \cap B \subseteq A \Rightarrow Int(A \cap B) \subseteq Int A.$

Similarly, $Int (A \cap B) \subseteq Int B$. $\therefore Int (A \cap B) \subseteq (Int A) \cap (IntA)$(a)

Int $A \subseteq A$ and Int $B \subseteq B$.

 $\therefore (Int A) \cap (Int A) \subseteq A \cap B$

Now, $(Int A) \cap (Int A)$ is an open set contained in $\cap B$.

But, *Int* $(A \cap B)$ is the largest open set contained in $\cap B$. \therefore (*Int* A) \cap (*Int* A) \subseteq *Int* ($A \cap B$)(b)

From (a) and (b), we get $Int(A \cap B) = (IntA) \cap (IntA)$

 $A \subseteq A \cup B \Rightarrow IntA \subseteq Int(A \cup B)$ Similarly, Int $B \subseteq Int(A \cup B)$ $\therefore Int(A \cup B) \supseteq (IntA) \cup (IntA)$

Note1.7: $Int(A \cup B)$ need not be equal to $(IntA) \cup (IntA)$

For, In **R** with usual metric, let A = (0,1] and $B = (1,2).A \cup B = (0,2).$ \therefore **Int** $(A \cup B) = (0,2)$ Now, **Int**A(0,1) and **Int**B = (1,2) and hence (**Int**A) \cup (**Int**A) $= (0,2)-\{2\}.$ \therefore **Int** $(A \cup B) \neq$ (**Int**A) \cup (**Int**A)

1.2.Subspace

Definition:

Let(M, d) be a metric space. Let M_1 be a nonempty subset of M. Then M_1 is also a metric space under the same metric d. We call (M_1, d) is a subspace of (M, d).

Theorem1.8Let M be a metric space and M_1 a subspace of M. Let $A \subseteq M_1$. Then A_1 is open in M_1 if and only if $A_1 = A \cap M_1$ where A is open in M.

Proof:

Let M_1 be a subspace of M. Let $a \in M_1$.

Let $M_1(a, r)$ be the open ball in M_1 with center a and radius r.

Then $B_1(a, r) = B(a, r) \cap M_1$ where B(a, r) is the open ball in M with center a and radius r.

Then $B_1(a, r) = \{x \in M_1/d(a, x) < r\}.$

Also, $B(a, r) = \{x \in M/d(a, x) < r\}.$

Hence, $B_1(a, r) = B(a, r) \cap M_1$.

Let A_1 be an open set in M₁.

Then,

$$A_1 = B_1(x, r(x))$$

$$= \bigcup_{x \in A_1} [B(x, r(x)) \cap M_1]$$

$$= \left[\bigcup_{x \in A_1} B(x, r(x)) \right] \cap M_1$$

 $= A \cap M_1$

Where A = $\bigcup_{x \in A_1} B(x, r(x))$ which is open in M.

Conversely, let $A = G \cap M_1$ where G is open in M.

We shall prove that A_1 is open inM.

Let $x \in A_1$.

Then $x \in A$ and $x \in M_1$.

Since A is open in M, there exists an open ball B(x,r) such that $B(x,r) \subseteq A$.

 $\therefore B(x,r)M_1 \cap \subseteq A \cap M_1.$

i.e. $B_1(x,r) \subseteq M_1$.

 $\therefore A_1$ is open in M_1 .

1.2.Bounded Sets in a Metric space.

Definition:Let(M, d) be a metric space. A subset A of M is said to be bounded if there exists a positive real number k such that $d(x, y) \le k \forall x, y \in A$.

Example: Any finite subset A of a metric space (M, d) is bounded. For, Let A be any finite subset of M.

If $A = \phi$ then A is obviously bounded.

Example:[0,1] is a bounded subset of **R** with usual metric since $d(x, y) \le 1$ for all $x, y \in [0,1]$.

Example: $(0, \infty)$ is an unbounded subset of *R*.

Example:Any subset A of a discrete metric space M is bounded since

 $d(x, y) \leq 1$ for all $x, y \in A$.

Note: Every open ball B(x, r) in a metric space (M, d) is bounded.

Definition:Let(M, d) be a metric space and $A \subseteq M$. The diameter of A, denoted by d(A), is defined by $d(A) = l.u.b \{ d(x, y)/x, y \in A \}$.

Example: In R with usual metric the diameter of any interval is equal to the length of the interval. The diameter of [0,1] is 1.

<u>UNIT – II</u> <u>CLOSED SETS</u>

2.1.ClosedSets

Definition: A subset A of a metric space M is said to be closed in M if its complement is open in M.

Examples

1. In \mathbf{R} with usual metric any closed interval [a, b] is closed. For,

 $[a, b]^{c} = \mathbf{R} - [a, b] = (-\infty, a) \cup (b, \infty).$

 $(-\infty, a)$ and (b, ∞) are open sets in R and hence $(-\infty, a) \cup (b, \infty)$ is open in **R**.

i.e. $[a, b]^c$ is open in **R**.

 $\therefore [a, b]$ is open in **R**.

1. Any subset A of a discrete metric space M is closed since A^c is open as every subset of M isopen.

Note. In any metric space M, ϕ and M are closed sets since $\phi^c = M$ and $M^c = \phi$ which are open in M. Thus ϕ and M are both open and closed in M.

Theorem 2.1.

In any metric space M, the union of a finite number of closed sets is closed.

Proof:

Let (M, d) be a Metric space.

Let B[a, r] be a closed ball in M.

Case (i) Suppose $B[a, r]^c = \phi$

 $\therefore B[a, r]^c$ is open and hence B[a, r] is closed.

Case (ii) Suppose $B[a, r]^c \neq \phi$

Let $x \in B[a, r]^c$.

 $\therefore x \notin B[a,r]^c$.

 $\therefore d(a, x) > r$

 $\therefore d(a, x) - r > 0.$

Let $r_1 = d(a, x) - r$. We claim that $B(x, r_1) \subseteq B[a, r]^c$. Let $y \in B(x, r_1)$. Then $d(x, y) < r_1 = d(a, x) - r$. $\therefore d(a, x) > d(x, y) + r$. Now, $d(a, x) \le d(a, y) + d(y, x)$. $d(a, y) \ge d(a, x) - d(y, x)$. > d(x, y) + r - d(y, x). = r. Thus, d(a, y) > r. $\therefore y \notin B[a, r]$. Hence $y \in B[a, r]^c$. $\therefore B(x, r_1) \subseteq B[a, r]^c$. $\therefore B[a, r]^c$ is open in M. $\therefore B[a, r]$ is closed in M.

Theorem 2.2

In any metric space M, arbitrary intersection of closed sets is closed.

Proof:

Let (M, d) be a metric space.

Let $\{A_i | i \in I\}$ be a family of closed sets in M.

We have to prove $\bigcap_{i \in I} A_i$ is closed.

We have $(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c$ (by De Morgan's law)

Since A_i is closed A_i^c is open.

Hence $\bigcup_{i \in I} A_i^c$ isopen. $\therefore (\bigcap_{i \in I} A_i)^c$ is open in M.

 $\therefore \bigcap_{i \in I} A_i$ is closed in *M*.

Theorem 2.3

Let M_1 be a subspace of a metric space M. Let $F_1 \subseteq M_1$. Then F_1 is closed in M_1 if and only if $F_1 = F \cap M_1$ where F is a closed set in M.

Proof.

Suppose that F is closed in M_1 .

Then $M_1 - F_1$ is open in M_1 .

 $\therefore M_1 - F_1 = A^c \cap M_1 \text{where} A \text{ is open in } M.$

Now, $F_1 = A \cap M_1$.

Since A is open in M, A^c is closed in M.

Thus, $F_1 = F \cap M_1$ where $F = A^c$ is closed in M.

Conversely, assume that $F_1 = F \cap M_1$ where F is closed in M

Since F is closed in M, F^c is open in M.

 $\therefore F^c \cap M_1$ is open in M_1 .

Now, $M_1 - F_1 = F^c \cap M_1$ which is open in M_1 .

$$\therefore$$
 F_1 is closed in M_1 .

Proof of the converse is similar.

2.1.Closure.

Definition:Let *A* be a subset of a metric space (M, d). The closure of *A*, denoted by \overline{A} is defined to be the intersection of all closed sets which contain *A*.

i.e. $\overline{A} = \cap \{B/B \text{ is closed in } M \text{ and } A \subseteq B\}$.

Note

(1) Since intersection of closed sets is closed, \bar{A} is closedset.

(2) A_1 is the smallest closed set containing A.

(3) A is closed \Leftrightarrow A = \overline{A} .

Theorem 2.4:

Let (M, d) be a metric space. Let $A, B \subseteq M$. Then

(i) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$

 $(ii)\overline{A \cup B} = \overline{A} \cup \overline{B}$

 $(\text{iii})\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ Proof: (i)let $A \subseteq B$, Now, $\overline{B} \supseteq B \supseteq A$. Thus \overline{B} is a closed set containing A. But \overline{A} is the smallest closed set containing A. $\therefore \overline{A} \subseteq \overline{B}.$ (ii)we have $A \subseteq A \cup B$. $\therefore \overline{A} \subseteq \overline{A \cup B}.$ (by (1)). Similarly, $\overline{B} \subseteq \overline{A \cup B}$. $\therefore \bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$ -----(1) Now, \overline{A} is a closed set containing A and \overline{B} is a closed set containing B. $\therefore \overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$. But $\overline{A \cup B}$ is the smallest closed set containing $A \cup B$. $\therefore \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ -----(2) From (1) and (2) we get $\overline{A \cup B} = \overline{A} \cup \overline{B}$. (iii)we have $A \cap B \subseteq A$ $\overline{A \cap B} \subseteq \overline{A}$ (by(i)). Similarly, $\overline{A \cap B} \subseteq \overline{B}$ $\therefore \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}.$

Note: $\overline{A \cap B}$ need not be equal to $\overline{A} \cap \overline{B}$.

2.1.Limit Point

Definition:Let (M, d) be a Metric space.Let $A \subseteq M$.Let $x \in M$. Then x is called a limit point of A if every open ball with centre x contains atleast one point of A differ from x. $(i. e)B(x, r) \cap (A - \{x\}) \neq \phi$ for all r > 0. The set of all limit points of A is called the **derived set** of A and is denoted by D(A)

Theorem 2.4

Let (M, d) be a metric space and $A \subseteq M$. Then x is a limit point of A if and only if every open ball with center x contains infinite number of points of A.

Proof:

Let *x* be a limit point of *A*.

Suppose an open ball B(x, r) contains only a finite number of points of A.

$$B(x,r) \cap (A - \{x\}) = \{x_1, x_2, \dots, x_n\}$$

$$let r_1 = min\{d(x, x_i) / i = 1, 2, ..., n\}.$$

Since $x \neq x_i$, $d(x, x_i) > 0$ for all i = 1, 2, ..., n and hence $r_1 > 0$.

Also $B(x,r) \cap (A - \{x\}) = \phi$.

 \therefore *x* is not a limit point of A which is a contradiction. Hence every ball with center *x* contains infinite number of points of *A*.

The converse is obvious.

Corollary 1: Any finite subset of a metric space has no limit points.

Theorem 2.5

Let **M** be a metric space and $A \subseteq M$. then $\overline{A} = A \cup D(A)$.

Proof: Let $x \in A \cup D(A)$.we shall prove that $x \in \overline{A}$.

Suppose $x \notin \overline{A}$.

 $\therefore x \in M - \overline{A}$ and since \overline{A} is closed $M - \overline{A}$ is open.

 \therefore There exists an open ball $B(x, r) \subseteq M - \overline{A}$.

 $\therefore B(x,r) \cap \overline{A} = \phi.$

 $\therefore B(x,r) \cap A = \phi$. (since $A \subseteq \overline{A}$).

 $x \notin A \cup D(A)$ which is a contradiction.

 $\therefore x \in \overline{A}.$

 $\therefore A \cup D(A) \subseteq \overline{A}$. Now let $x \in \overline{A}$. To prove $x \in A \cup D(A)$.

If $x \in A$ clearly $x \in A \cup D(A)$.

Suppose $x \notin A$. We claim that $x \in D(A)$.

Suppose $x \notin D(A)$. Then there exists an open ball B(x, r) such that $B(x, r) \cap A = \phi$.

 $\therefore B(x,r)^c \supseteq A \text{ and } B(x,r)^c \text{ is closed.}$

But \overline{A} is the smallest closed set containing A.

 $\therefore \overline{A} \subseteq B(x,r)^c.$

but $x \in \overline{A}$ and $x \notin B(x, r)^c$ which is a contradiction.

Hence $x \in D(A)$.

 $\therefore x \in A \cup D(A).$

 $\therefore \ \overline{A} \subseteq A \cup D(A)$

Hence $\therefore A \cup D(A) = \overline{A}$.

Corollary 1:*A* is closed iff *A* contains all its limit points.

(i.e.) A is closed iff $D(A) \subseteq A$.

Proof: *A* is closed $\Leftrightarrow A = \overline{A}$ (by theorem 2.13)

 $\Leftrightarrow A = A \cup D(A).$

 $\Leftrightarrow \boldsymbol{D}(A) \subseteq \boldsymbol{A}.$

Corollary 2: $x \in \overline{A} \Leftrightarrow B(x, r) \cap A \neq \phi$ for all r > 0.

Proof: let $x \in \overline{A}$, then $x \in A \cup D(A)$.

 $\therefore x \in A \text{ or } x \in D(A).$

If $x \in A$ then $x \in B(x, r) \cap A$.

if $x \in D(A)$ then $B(x, r) \cap A \neq \phi$ for all r > 0.

Hence in both cases $B(x, r) \cap A \neq \phi$ for all r > 0.

Conversely Suppose $B(x, r) \cap A \neq \phi$ for all r > 0.

We have to prove that, $x \in \overline{A}$.

If $x \in A$ trivially $x \in \overline{A}$.

Let $x \notin A$. Then $A - \{x\} = A$.

$$\therefore B(x,r) \cap A - \{x\} \neq \phi.$$

 $\therefore x \in D(A).$

$$\therefore x \in \overline{A}.$$

Corollary 3:

 $x \in \overline{A} \Leftrightarrow G \cap A \neq \phi$ for every open set *G* containing *x*.

Proof: Let $x \in \overline{A}$.

Let **G** be an open set containing **x**.then there exists r > 0 such that $B(x, r) \subseteq G$.

Also, since $x \in \overline{A}$, $B(x, r) \cap A \neq \phi$.

 $\therefore \mathbf{G} \cap \mathbf{A} \neq \boldsymbol{\phi}.$

Conversely suppose $G \cap A \neq \phi$ for every open set G containing x.

Since B(x, r) is an open set containing x, we have $B(x, r) \cap A \neq \phi$. $\therefore x \in \overline{A}$.

2.1.Dense sets

Definition: A subset A of a metric space M is said to be dense in M or every where dense if $\overline{A} = M$.

Definition: A metric space *M* is said to be separable if there exists a countable dense subset in *M*.

Note :

(1) Any countable metric space is separable.

(2)Any uncountable discrete metric space is not separable.

Theorem 2.6:

Let M be a metric space and $A \subseteq M$.then the following are equivalent.

- (i) **A**is dense in **M**.
- (ii) The only closed set which contains *A* is *M*.
- (iii) The only open set disjoint from A is ϕ .
- (iv) **A** intersects every non empty open set.
- (v) **A**intersects every open ball.

Proof:

(i)⇒(ii).

Suppose *A* is dence in *M*.

Then $\overline{A} = M$. ----- (1)

Now, let $F \subseteq M$ be closed set containing A.

Since \overline{A} is a closed set containing A, we have $\overline{A} \subseteq F$.

Hence $M \subseteq F$.(by (1))

 $\therefore M = F.$

Hence, The only closed set which contains **A** is **M**.

(ii)⇒(iii)

Suppose (iii) is not true.

Then there exists a non emptyopenset B such that, $B \cap A = oldsymbol{\phi}$

 $\therefore B^c$ is z closed set and $B^c \supseteq A$.

Further, since $B \neq \phi$ we have $B^c \neq M$ which is a contradiction to (ii).

Hence (ii))⇒(iii).

Obviously, (iii)⇒(iv).

(iv) \Rightarrow (v),since every open ball is an openset.

(iv) ⇒(i)

Let $x \in M$. Suppose every open ball B(x, r) intersects A.

Then by corollary, $x \in \overline{A}$.

- $\therefore M \subseteq \overline{A}.$ But trivially $\overline{A} \subseteq M.$
- $\therefore \overline{A} = M.$
- \therefore *A* is dense in *M*.

2.2.Completeness

Definition: let (M, d) ba a metric space. Let $(x_n = x_1, x_2, ..., x_n ...)$ be a sequence of points in M. Let $x \in M$. We say that (x_n) converges to x if given $\varepsilon > 0$ there exists a positive integer n_0

such that $d(x_n, x) < \varepsilon$ for all $n \ge n_0$. Also x is called a limit of (x_n) .

If (x_n) converges to x we write $\lim_{n \to \infty} x_n = x$ or $(x_n) \to x$.

Note 1: $(x_n) \to x$ iff for each open ball $B(x, \varepsilon)$ with cebtre x there exists a positive integer n_0 such that $x_n \in B(x, \varepsilon)$ for all $n \ge n_0$.

Thus the open ball $B(x, \varepsilon)$ contains all but a finite number of terms of the sequence.

Note 2: $(x_n) \rightarrow x$ iff the sequence of real numbers $d((x_n, x)) \rightarrow 0$.

Theorem2.6:

For a convergent sequence (x_n) the limit is unique.

Proof: Suppose $(x_n) \rightarrow x$ and $(x_n) \rightarrow y$.

Let arepsilon > 0 be given. Then there exist positive integers n_1 and n_2 such that

$$d(x_n, x) < \frac{1}{2}\varepsilon$$
 for all $n \ge n_1$ and $d(x_n, y) < \frac{1}{2}\varepsilon$ for all $n \ge n_2$.

Let for all m be a positive integer such that for all $m \ge n_1, n_2$.

Then $d(x, y) \le d(x, x_m) + d(x_m, y)$

$$<\frac{1}{2}\varepsilon+\frac{1}{2}\varepsilon=\varepsilon.$$

$$\therefore d(x,y) < \varepsilon.$$

Since $\varepsilon > 0$ is arbitary d(x, y) = 0.

$$\therefore x = y.$$

Theorem2.7:

let M be a metric space and $A \subseteq M$. Then

- (vi) $x \in \overline{A}$ iff there exists a sequence (x_n) in A such that $(x_n) \to x$.
- (vii) x is a limit point of A iff there exists a sequence (x_n) of distinct points in A such that $(x_n) \rightarrow x$.

Proof:

Let $x \in \overline{A}$.

Then, $x \in A \cup D(A)$ (by theorem)

 $\therefore x \in A \text{ or } x \in D(A)$

If $x \in A$, then the constant sequence x, x, \dots Is a sequence in A converging to x.

If $x \in D(A)$ then the open ball B(x, 1/n) contains infinite number of points of A (by theorem)

- \therefore We can choose $x_n \in B(x, 1/n) \cap A$ such that $x_n \neq x_1, x_2, \dots, x_{n-1}$ for each n.
- \therefore (x_n) is a sequence of distinct points in A. Also $d(x_n, x) < \frac{1}{n}$ for all n.
- $\therefore \lim_{x\to\infty} d(x_n, x) = \mathbf{0}.$

$$\therefore (x_n) \to x.$$

Conversely, suppose there exists a sequence (x_n) in A such that $(x_n) \rightarrow x$

Then for any r > 0 there exists a positive integer n_0 such that $d(x_n, x) < r$ for all $n \ge n_0$.

- $\therefore x_n \in B(x,r)$ for all $n \ge n_0$.
- $\therefore B(x,r) \cap A \neq \phi$
- $\therefore x \in \overline{A}$. (by corollary 2)

Further if (x_n) is a sequence of distinct points, $B(x,r) \cap A$ is infinite.

 $\therefore x \in \boldsymbol{D}(A).$

 $\therefore x$ is a limit point of *A*.

Definition: Let (M, d) be a metric space. let (x_n) be a sequence of points in $M.(x_n)$ is said to be a caushy sequence in M if given $\varepsilon > 0$ there exists a positive integer n_0 such that $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

Theorem 2.7:

Let (M, d) be a metric space. Then any convergent sequence in M is a Cauchy sequence.

Proof:

Let (x_n) be a convergent sequence of points in **M** converging to $x \in M$.

Let $\varepsilon > 0$ be given.

Then there exists a positive integer n_0 such that $(x_n, x) < \frac{1}{2}\varepsilon$ for all $n \ge n_0$.

Therefore, $d(x_n, x_m) \le d(x_n, x) + d(x, x_m)$

$$< rac{1}{2}arepsilon+rac{1}{2}arepsilon$$
 for all $m,n\geq n_0.$

 $= \varepsilon$ for all $m, n \ge n_0$.

 $\therefore d(x_n, x_m) < \varepsilon$. for all $m, n \ge n_0$.

 $\therefore (x_n)$ is a convergent sequence.

Note: The converse of the above theorem is not true.

Definition: A metric space M is said to be complete if every Caushy sequence in M converges to a point in M.

Theorem 2.8:

(Canton's Intersection Theorem)

Let M be a metric space. M is complete iff for every sequence (F_n) of nonempty closed subsets of M such that

 $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ and $d((F_n)) \to 0$. $\bigcap_{n=1}^{\infty} F_n$ is nonempty.

Proof:

Let *M* be acomplete metric space.

Let (F_n) be a sequence of closed subsets of M such that

 $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ ------(1)

and $d((F_n)) \rightarrow 0$. ------(2)

we claim that . $\bigcap_{n=1}^{\infty} F_n$ is nonempty.

For each positive integer n, choose a point $x_n \in F_n$.

By (1), $x_n, x_{n+1}, x_{n+2}, ...$ all lies in F_n .

(i.e) $x_m \in F_n$ for all $m \ge n$. -----(3)

Since $(d(F_n)) \to 0$, given $\varepsilon > 0$, there exists a positive integer n_0 , such that $d(F_n) < \varepsilon$ for all $n \ge n_0$.

In particular $d(F_{n_0}) < \varepsilon$. ------ (4) $\therefore d(x, y) < \varepsilon$ for all $x, y \in F_n$. Now, $x_m \in F_{n_0}$ for all $m \ge n_0$. (by(3)) $\therefore m, n \ge n_0 \Rightarrow x_m, x_n \in F_{n_0}$. $\Rightarrow d(x_m, x_n) < \varepsilon$. (by(4)) $\therefore (x_n)$ is a cauchy sequence in M. Since M is complete there exists a point $x \in M$ such that $(x_n) \to x$.

We claim that $x \in \bigcap_{n=1} F_n$.

Now, for any positive integer n, x_n , x_{n+1} , x_{n+2} , is a sequence in F_n and this sequence converges to x.

 $\therefore x \in \overline{F_n}$ (by theorem 3.2)

But $\overline{F_n}$ is closed and hence $\overline{F_n} = F_n$.

 $\therefore x \in F_n$.

 $\therefore x \in \bigcap_{n=1}^{\infty} F_n$. Hence $\bigcap_{n=1}^{\infty} F_n \neq \phi$.

Conversely let, (x_n) is a cauchy sequence in M.

Let
$$F_1 = \{x_1, x_2, \dots, x_n, \dots\}$$

 $F_1 = \{x_2, x_3, \dots, x_n, \dots\}$

....

....

 $F_n = \{x_n, x_{n+1}, x_{n+2}, \dots\}$

Clearly $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$

 $\therefore \overline{F_1} \supseteq \overline{F_2} \supseteq \cdots \supseteq \overline{F_n} \supseteq \cdots$

 \therefore ($\overline{F_n}$) is a decreasing sequence of closed of closed sets.

Now, since (x_n) is a Cauchy sequence given $\varepsilon > 0$ there exists a positive integer n_0 , such that $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

 \therefore For any integer $n \ge n_0$, the distance between any two points of F_n is less than ε .

 $\dot{\cdot} d(F_n) < \varepsilon$ for all $n \ge n_0$

But $d(F_n) = d(\overline{F_n})$.

 $(\boldsymbol{d}(\overline{\boldsymbol{F}_n})) \to \boldsymbol{0}.$

Hence $\bigcap_{n=1}^{\infty} \overline{F_n}$ is nonempty

Let $x \in \bigcap_{n=1}^{\infty} \overline{F_n}$. Then x and $x_n \in \overline{F_n}$

$$\therefore d(x_n, x) \leq d(\overline{F_n}).$$

 $\therefore d(x_n, x) < \varepsilon$ for all $n \ge n_0$ (by(5))

$$\therefore (x_n) \to x.$$

 \therefore *M* is complete.

Note:1 In the above theorem $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

Note: 2In the above theorem $\bigcap_{n=1}^{\infty} F_n$ may be empty if each F_n is not closed.

Note:3 In the above theorem $\bigcap_{n=1}^{\infty} F_n$ may be empty if the hypothesis $(d(\overline{F_n})) \to 0$ is omitted.

Definition: A subset of a metric space *M* is said to be **nowhere dense** in *M* if $Int \overline{A} = \phi$.

Definition: A subset of a metric space M is said to be of **first category** in M if A can be expressed as a countable union of nowhere dense sets.

A set which is not of first category is said to be of **second category**.

Theorem2.9:(Baire's Category Theorem)

Any complete metric space is of second category.

Proof: Let *M* be a complete metric space.

Claim:*M* is not of first category.

Since M is open and A_1 is nowhere dense, there exists an open ball say B_1 of radius less than 1 such that B_1 is disjoint from A_1 . (refer theorem 3.6)

Let F_1 denote the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_1 .

Now, Int F_1 is open and A_2 is nowhere dense.

: Int F_1 contains an open ball B_2 of radius less than $\frac{1}{2}$ such that B_2 is disjoint from A_2 .

Let F_2 be a concentric closed ball whose radius is $\frac{1}{2}$ times that of B_2 . Now Int F_2 is open and A_3 is nowhere dense.

: Int F_2 contains an open ball B_3 of radius less than $\frac{1}{4}$ such that B_2 is disjoint from A_3 .

Let F_3 be a concentric closed ball whose radius is $\frac{1}{2}$ times that of B_3 .

Proceeding like this we get a sequence of nonempty closed balls F_n such that $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ and $d(F_n) < \frac{1}{2^n}$.

Hence $(d(F_n)) \rightarrow 0$ as $n \rightarrow \infty$.

Since *M* is complete, by Contor's intersection theorem, there exists a point *x* in *M* such that $x \in \bigcap_{n=1}^{\infty} F_n$.

Also each F_n is disjoint from A_n .

Hence, $x \notin F_n$ for all n.

$$\therefore x \notin \bigcup_{n=1}^{\infty} A_n.$$

 $\therefore \bigcup_{n=1}^{\infty} A_n \neq M$. Hence *M* is of second category.

Corollary:*R* is of second category.

<u>UNIT - III</u> COUNTINUITY

Definition: let (M_1, d_1) and (M_2, d_2) be metric spaces.

Let $f: M_1 \to M_2$ be a function. Let $a \in M_1$ and $l \in M_2$. The function f is said to have a **limit** as $x \to a$ if given $\varepsilon > 0$, there exists $\delta > 0$ such that,

 $0 < d_1(x, a) < \delta \Rightarrow d_2(f(x), l) < \varepsilon.$

We write $\lim_{x \to a} f(x) = l$.

Definition:Let (M_1, d_1) and (M_2, d_2) be metric spaces.Let $a \in M_1$.A function $f: M_1 \to M_2$ is said to be **continuous** at a if given $\varepsilon > 0$, there exists $\delta > 0$ such that,

 $d_1(x,a) < \delta \Rightarrow d_2(f(x),f(a)) < \varepsilon.$

f is said to be **continuous** if its continuous at every point of M_1 .

Note:1*f* is continuous at *a* iff $\lim_{x \to a} f(x) = f(a)$.

Note:2The condition $d_1(x, a) < \delta \Rightarrow d_2(f(x), f(a)) < \varepsilon$ can be rewritten as

(i)
$$x \in B(x, \delta) \Rightarrow f(x) \in B(f(a), \varepsilon)$$
 or

(ii)
$$f(B(a,\delta)) \subseteq B(f(a),\varepsilon).$$

Theorem 3.1:

Let (M_1, d_1) and (M_2, d_2) be metric spaces.Let $a \in M_1$. A function $f: M_1 \to M_2$ is continuous at a iff $(x_n) \to a \Rightarrow (f(x_n)) \to f(a)$.

Proof: Suppose f is continuous at a.

Let (x_n) be a sequence in M_1 such that $(x_n) \rightarrow a$.

Claim: $(f(x_n)) \rightarrow f(a)$.

Let $\varepsilon > 0$ be given. By definition of continuity, there exists $\delta > 0$ such that,

 $d_1(x,a) < \delta \Rightarrow d_2(f(x), f(a)) < \varepsilon.$ (1)

Since $(x_n) \rightarrow a$, there exists a positive integer n_0 such that $d_1(x_n, a) < \delta$ for all $n \ge n_0$.

$$\therefore d_2(f(x), f(a)) < \varepsilon \text{ for all } n \ge n_0. \tag{by(1)}$$

$$\therefore (f(x_n)) \longrightarrow f(a).$$

Conversely, suppose $(x_n) \rightarrow a \Rightarrow (f(x_n)) \rightarrow f(a)$.

Claim: *f* is continuous at *a*.

Suppose f is not continuous at a. Then there exists an $\varepsilon > 0$ such that for all $\delta > 0$,

$$f(B(a,\delta)) \not\subset B(f(a),\varepsilon)$$

In particular, $f\left(B\left(a,\frac{1}{n}\right)\right) \not\subset B(f(a),\varepsilon)$.

Choose x_n such that $x_n \in B\left(a, \frac{1}{n}\right)$ and $(x_n) \notin B(f(a), \varepsilon)$.

 $\therefore d_1(x_n, a) < \frac{1}{n'} \text{ and } d_2(f(x), f(a)) \ge \varepsilon.$

 $(x_n) \rightarrow a$ and $(f(x_n))$ not converges to f(a) which is a contradiction to the hypothesis. Hence, f is continuous at a.

Corollary 1: A function $f: M_1 \to M_2$ is continuous at a iff $(x_n) \to x \Rightarrow (f(x_n)) \to f(x)$.

Theorem 3.2:

Let (M_1, d_1) and (M_2, d_2) be metric spaces. $f: M_1 \to M_2$ is continuous iff $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .

(i.e) f is continuous iff inverse image of every open set is open.

Proof:

Suppose f is continuous

Let G ba an opeb set in M_2 .

Claim: $f^{-1}(G)$ is open in M_2 .

If $f^{-1}(G)$ is empty, then it is open. Let $f^{-1}(G) \neq \phi$.

Let $x \in f^{-1}(G)$. Hence $f(x) \in G$.

Since G is open, there exists an open ball $B(f(x), \varepsilon)$ such that $B(f(x), \varepsilon) \subseteq G$.

Now, by definition of continuity, there exists an open ball $B(x, \delta)$ such that $f(B(x, \delta)) \subseteq B(f(x), \varepsilon)$.

$$\therefore f(B(x,\delta)) \subseteq G \quad (by(1))$$

 $\therefore B(x,\delta)\subseteq f^{-1}(G)$

Since $x \in f^{-1}(G)$ is arbitrary, $f^{-1}(G)$ is open.

Conversely, suppose $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .

we claim that f is continuous.

Let $x \in M_1$.

Now, $B(f(x), \varepsilon)$ is an open set in M_2 .

∴ $f^{-1}(B(f(x), \varepsilon))$ is open in M_1 and $x \in f^{-1}(B(f(x), \varepsilon))$.

Therefore there exists $\delta > 0$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon))$.

 $\therefore f(B(x,\delta)) \subseteq (B(f(x),\varepsilon).$

 \therefore *f* is continuous at *x*.

Since $x \in M_1$ is arbitrary f is continuous.

Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f: M_1 \to M_2$ is continuous iff $f^{-1}(F)$ is closed in M_1 whenever F is closed in M_2 .

Proof: Suppose $f: M_1 \to M_2$ is continuous.

Let $F \subseteq M_2$ be closed in M_2 .

 $\therefore F^c$ is open in M_2 .

 $\therefore f^{-1}(F^c)$ is open in M_1 .

Conversely, suppose $f^{-1}(F)$ is closed in M_1 whenever F is closed in M_2 .

We claim that f is continuous.

Let G be an open set in M_2 .

 $\therefore G^c$ is open in M_2 .

 $\therefore f^{-1}(G^c)$ is closed in M_1 .

 $\therefore [f^{-1}(G)]^c$ is closed in M_1 .

 $\therefore f^{-1}(G)$ is open in M_1 .

 \therefore *f* is continuous.

Theorem 3.4:

Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f: M_1 \to M_2$ is continuous iff $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq M_1$.

Proof:

Suppose f is continuous.

Let $A \subseteq M_1$. Then $f(A) \subseteq M_2$.

Since f is continuous, $f^{-1}(\overline{f(A)})$ is closed in M_1 .

Also $f^{-1}(\overline{f(A)}) \supseteq A$ (since $\overline{f(A)} \supseteq f(\overline{A})$)

But \overline{A} is the smallest closed set containing A.

$$\therefore \bar{A} \subseteq f^{-1}\big(\overline{f(A)}\big)$$

$$\therefore f(\bar{A}) \subseteq \overline{f(A)}.$$

Conversely, let $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq M_1$.

To prove: *f* is continuous.

We shall show that if F is a closed set in M_2 , then $f^{-1}(F)$ is closed in M_1 .

By hypothesis, $f(\overline{f^{-1}(F)}) \subseteq \overline{ff^{-1}(F)}$ $\subseteq \overline{F}$.

= F. (since F is closed.) Thus $f(\overline{f^{-1}(F)}) \subseteq F$. $\therefore (\overline{f^{-1}(F)}) \subseteq f^{-1}(F)$ Also $f^{-1}(F) \subseteq (\overline{f^{-1}(F)})$. $f^{-1}(F) = \overline{f^{-1}(F)}$. Hence $f^{-1}(F)$ is closed. \therefore f is continuous.

3.2Homeomorphism

Definition: Let $Let(M_1, d_1)$ and (M_2, d_2) be two metric spaces. A function $f: M_1 \to M_2$ is called a **homeomorphism** if

- (i) *f* is 1-1 and onto.
- (ii) *f* is continuous.
- (iii) f^{-1} is continuous.

 M_1 and M_1 are said to be homeomorphic if there exists a homeomorphism $f: M_1 \rightarrow M_2$.

Definition: A function $f: M_1 \to M_2$ is said to be an open map if f(G) is open in M_2 for every open set G in M_1 .

(ie) f is an open map if the image of an open set in M_1 is an openset in M_2 .

f is called a closed map if f(F) is closed in M_2 for every closed set F in M_1 .

Note:Let $f: M_1 \to M_2$ be a 1-1 onto function. Then f^{-1} is continuous iff f is an open map.

For, f^{-1} is continuous iff for any open set G in $M_1(f^{-1})^{-1}(G)$ is open in M_2 .

But, $(f^{-1})^{-1}(G) = f(G)$.

: f^{-1} is continuous iff for every open set G in M_1 , f(G) is open in M_2 .

 $\therefore f^{-1}$ is continuous iff f is an open map.

Note: Similarly f^{-1} is continuous iff f is a closed map.

Note:Let $f: M_1 \rightarrow M_2$ be a 1-1 onto map. Then the following are equivalent.

- (i) f is homeomorphism.
- (ii) *f* is continuous open map.
- (iii) *f* is continuous closed map.

Proof:

(i) \Leftrightarrow (ii) follows from Note1 and the definition of homeomorphism.

(i))⇔(iii) follows from Note2 and the definition of homeomorphism.

Note: Let $f: M_1 \to M_2$ be a homeomorphism. $G \subseteq M_1$ is open in M_1 iff f(G) is open in M_2 .

Note:Let $f: M_1 \rightarrow M_2$ be a 1-1 onto map. Then f is a homeomorphism iff it satisfies the following condition.

F is closed in M_1 iff f(F) is closed in M_2 .

3.3 Uniform Continuity

Definition : Let(M_1 , d_1) and (M_2 , d_2) be two metric spaces. A function $f: M_1 \to M_2$ is said to be uniformly continuous on M_1 if given > 0, there exists $\delta > 0$ such that,

 $d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \varepsilon.$

Problem 3.5: Prove that $f: [0,1] \rightarrow \mathbf{R}$ defined by $f(x) = x^2$ is uniformly continuous on [0,1].

Solution:

Let $\varepsilon > 0$ be given. Let $x, y \in [0,1]$. Then $|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y|$ $\leq 2|x - y|$ (since $x \leq 1$ and $y \leq 1$) $\therefore |x - y| < \frac{1}{2}\varepsilon \Rightarrow |f(x) - f(y)| < \varepsilon$.

 \therefore *f* is uniformly continuous on[0,1].

Problem 3.6: Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$ is uniformly continuous on \mathbb{R} .

Solution:

Let $x, y \in \mathbf{R}$ and x > y. sin x - siny = (x - y)cos z where x > z > y (by mean value theorem) $\therefore |sin x - sin y| = |x - y||cos z|$ $\leq |x - y|$ (since $|cos z| \leq 1$). Hence for a given > 0, we choose $\delta = \varepsilon$, we have $|x - y| < \delta \Longrightarrow |f(x) - f(y)| = |sin x - sin y| < \varepsilon$.

 \therefore f(x) = sin x is uniformly continuous on **R**.

3.4 Discontinuous funtions on r

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is said to approach to a **limit***l* as *x* tends to *a* if given > 0, there exists $\delta > 0$ such that

 $0 < |x - a| < \delta \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a} f(x) = l$.

Definition: A function f is that to have l as the **right limit** at x = a if given $\varepsilon > 0$, there exists

 $\delta > 0$ such that $a < x < a + \delta \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a^+} f(x) = l$.

Also we denote the right limit lby f(a +).

A function f is that to have l as the **left limit** at x = a if given > 0, there exists $\delta > 0$ such that $a - \delta < x < a \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a^-} f(x) = l$.

Also we denote the right limit l by f(a -).

Note: $\lim_{x \to a} f(x) = liff \lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = l.$

(i.e.) $\lim f(x)$ exists iff the left and right limits of f(x) at x = a exists and are equal.

Note: The definition of continuity of f at x = a can be formulated as follows.

f is continuous at at a iff f(a +) = f(a -) = f(a).

Note: If $\lim f(x)$ does not exists then one of the following happens.

- (i) $\lim_{x \to a^+} f(x)$ does not exists.
- (ii) $\lim_{x \to a_-} f(x)$ does not exists.
- (iii) $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ exist and are unequal.

Definition: If a function f is discontinuous at *a* then *a* is called a point of discontinuity for the function.

If *a* is a point of discontinuity of a function then any one of the following cases arises.

- (i) $\lim_{x \to a} f(x)$ exists but is not equal to f(a).
- (ii) $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^+} f(x)$ exist and are not equal.
- (iii) Either $\lim_{x \to a^-} f(x)$ or $\lim_{x \to a^+} f(x)$ does not exist.

Definition: let *a* be a point of disconitinuity for f(x). *a* is said to be a point of discontinuity of the first kind if $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist and both of them are finite and unequal.

a is said to be a point of discontinuity of the second kind if either $\lim_{x \to a^-} f(x)$ or $\lim_{x \to a^+} f(x)$ are does not exist.

Definition:Let $A \subseteq R$. Afunction $f: A \rightarrow \mathbf{R}$ is called monotonic increasing if $x, y \in A$ and $x < y \Rightarrow f(x) \le f(y)$.

f is called monotonic decreasing if $x, y \in A$ and $x > y \Rightarrow f(x) \ge f(y)$.

f is called monotonic if it is either monotonic increasing or monotonic decreasing.

Theorem 3.7:

Let $f:[a, b] \rightarrow \mathbf{R}$ be a **monotionic increasing function.** Then has a left limit and right limit at every point (a,b). Also f has a right limit at a and f has a left limit at b. Further x<y \Rightarrow $f(x+) \leq f(y-)$.

Similar result is true for monotonic decreasing function.

Proof:

Let $f: [a, b] \rightarrow \mathbf{R}$ be a monotionic increasing function. Let $x \in [a,b]$. then $\{ f(t) | a \le t < x \}$ is bounded above by f(x). Let $l = l.u.b\{f(t)/a \le t < x\}$ Claim: f(x-) = lLet $\varepsilon > 0$ be given .By definition l.u.b there exists t such that $a \le t < x$ and $l-\varepsilon < f(t) \le t$ l Therefore $t < u < x \Rightarrow l - \varepsilon < f(t) \le f(u) \le l$ (since f is monotonic increasing) $\Rightarrow l - \varepsilon < f(u) \le l$ $\therefore x - \delta < u < x \Rightarrow l - \varepsilon < f(u) \le l \text{ where } \delta = x - t$ \therefore f(x-) = l Similarly we can prove that $f(x+) = g.l.b\{f(t)/x < t \le b\}$ To Prove : $x < y \Rightarrow f(x+) \le f(y-)$ Let x < yNow $f(x+) = g. l. b \{ f(t) / x < t \le b \}$ $= g.l.b\{f(t)/x < t \le y\}$ (since **f** is monotonic increasing) Also, $f(y-) = l.u.b\{f(t)/a \le t < y\}$ $= l.u.b\{f(t)/x \le t < y\}$ $f(x+) \leq f(y-)$ The proof of monotonic decreasing function is similar.

Theorem 3.8:

Let $f:[a,b] \rightarrow R$ be a monotionic function. Then the set of points of [a,b] at which f is discontinuous is countable.

Proof:

Let $E = \{x/x \in [a, b] \text{ and } f \text{ is discontinuous at } x\}$

Let $x \in E$. then by previous theorem,

f(x+) and f(x-) exists and $f(x-) \le f(x) \le f(x+)$

If f(x-) = f(x+) then f(x-) = f(x) = f(x+)

 \therefore **f** is continuous at **x** which is a contradiction.

$$\therefore f(x-) \neq f(x+)$$

$$\therefore f(x-) < f(x+)$$

Now choose a rational number r(x) such that f(x-) < r(x) < f(x+).

This define a map r from E to Q which maps x to r(x).

Claim: *r* is 1-1

Let $x_1 < x_2$

 $\therefore f(x_1+) < f(x_2-)$ (by previous theorem)

Also, $f(x_1 -) < r(x_1) = f(x_1 +)$

And $f(x_2-) < r(x_2) = f(x_2+)$.

∴ $r(x_1) < f(x_2 +) < f(x_2 -) < r(x_2)$.

Thus $x_1 < x_2 \Rightarrow r(x_1) < r(x_2)$.

Therefore, $r: E \rightarrow Q$ is 1-1. Hence E is countable

<u>UNIT - IV</u> CONNECTEDNESS

Definition: Let (M, d) be a metric space. *M* is said to be **connected** if *M* cannot be represented as the union of two disjoint nonempty open sets.

If M is not connected it is to be **disconnected**.

Example: Let $M = [1,2] \cup [3,4]$ with usual metric. Then M is disconnected.

Proof:

[1,2] and [3,4] are open in M.

Thus, M is the union of two disjoint nonempty open dets namely [1,2] and [3,4]. Hence M is disconnected.

Theorem 4.1:

Let (M, d) be a metric space. Then the following are equivalent.

i) M is connected.

ii) *M* cannot be written as the union of two disjoint nonempty closed sets.

iii) *M* cannot be written as the union of two nonempty sets *A* and *B* such that $A \cap \overline{B} = \overline{A} \cap B = \phi$.

iv) M and ϕ are the only sets which are both open and closed in M.

Proof:

(i)⇒(ii)

Suppose (ii) is true.

```
\therefore M = A \cup B where A and B are closed A \neq \phi, B \neq \phi and A \cap B = \phi.
```

 $\therefore A^c = B \text{ and } B^c = A.$

Since A and B are closed, A^c and B^c are open.

 \therefore BandA are open.

Thus M is the union of two disjoint nonempty open sets.

 \therefore *M* is not connected which is a contradiction.

∴ (i)⇒(ii)

(ii)⇒(iii)

Suppose (iii) is not true.

```
Then M = A \cup B where A \neq \phi, B \neq \phi and A \cap \overline{B} = \overline{A} \cap B = \phi.
```

Claim: A and B are closed.

```
Let x \in \overline{A}.
```

 $\therefore x \notin B \qquad (\text{since } \overline{A} \cap B = \phi)$ $\therefore x \in A \qquad (\text{since } A \cup B = M)$ $\overline{A} \subseteq A.$ But $A \subseteq \overline{A}.$ $\therefore A = \overline{A} \text{ and hence } A \text{ is closed.}$ Similarly *B* is closed.

(since $A = \overline{A}$). Now, $A \cap B = \overline{A} \cap B$. $=\phi$. Thus $M = A \cup B$ where $A \neq \phi, B \neq \phi, A$ and B are closed and $A \cap B = \phi$ which is contradiction to (ii). ∴(ii)⇒(iii) (iii) ⇒(iv) Suppose (iv) is not true. Then there exists $A \subseteq M$ such that $A \neq M$ such that $A \neq M$ and $A \neq \phi$ and A is both open and closed. Let $B = A^c$. Then B is also both open and closed and $B \neq \phi$. Also $M = A \cup B$. Further $\overline{A} \cap B = A \cap A^c$. (since $A = \overline{A}$ and $A = A^c$) $= \phi$. Similarly $A \cap \overline{B} = \phi$. $\therefore M = A \cup B$ where $A \cap \overline{B} = \phi = \overline{A} \cap B$ which is a contradiction to (iii). ∴(iii)⇒(iv). (iv)⇒(i). Suppose *M* is not connected. $\therefore M = A \cup B$ where $A \neq \phi, B \neq \phi, A$ and B are open and $A \cap B = \phi$. Then $B^c = A$. Now, since *B* is open *A* is closed. Also $A \neq \phi$ and $A \neq M$. (since $B \neq \phi$) \therefore A is a proper non empty subset of M which is both open and closed which is a contradiction to (iv). ∴ (iv))⇒(i).

Theorem 4.2

A metric space M is connected iff there does not exist a continuous function f from M onto the discrete metric space $\{0,1\}$.

Proof: Suppose there exists a continuous function f from M onto $\{0,1\}$.

Since $\{0,1\}$ is discrete, $\{0\}$ and $\{1\}$ are open.

: $A = f^{-1}(\{0\})$ and $B = f^{-1}(\{1\})$ are open in M.

Since f is onto, A and B are non empty.

Clearly $A \cap B = \phi$ and $A \cup B = M$.

Thus $M = A \cup B$ where A and B are disjoint nonempty open sets.

 \therefore *M* is not connected which is a contradiction.

Hence there does not exist a continuous function from onto the discrete metric space $\{0,1\}$. Conversely, suppose M is not connected.

Then, there exists a disjoint nonempty open sets A and B in M such that $M = A \cup B$.

Now, define
$$f: M \to \{0,1\}$$
 by $f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$

Clearly f is onto.

Also, $f^{-1}(\phi) = \phi$, $f^{-1}(\{0\}) = a$, $f^{-1}(\{1\}) = B$ and $f^{-1}(\{0,1\}) = M$. Thus the inverse image of every open set in $\{0,1\}$ is open in M.

Hence f is continuous.

Thus there exists a continuous function f from M onto $\{0,1\}$.which is a contradiction. Hence M is not connected.

Problem 4.3:

Let *M* be a metric space. Let *A* be a connected subset of *M*. If *B* is a subset of of *M* such that $A \subseteq B \subseteq \overline{A}$ then *B* is connected. In particular \overline{A} is connected. **Solution:** Suppose *B* is not connected. Then $B = B_1 \cup B_2$ where $B_1 \neq \phi, B_2 \neq \phi, B_1 \cap B_2 = \phi$ and B_1 and B_2 are open in *B*. Now, since B_1 and B_2 are open sets in *B* there exists open sets G_1 and G_2 in *M* such that $B_1 = G_1 \cap B$ and $B_2 = G_2 \cap B$. $\therefore B = B_1 \cup B_2 = (G_1 \cap B) \cup (G_2 \cap B) = (G_1 \cup G_2) \cap B$. $\therefore B \subseteq G_1 \cup G_2$. $\therefore A \subseteq G_1 \cup G_2$ (since $A \subseteq B$) $\therefore A = (G_1 \cup G_2) \cap A$. $= (G_1 \cap A) \cup = (G_1 \cap A)$.

Now, $G_1 \cap A$ and $G_2 \cap A$ are open in A.

Further, $(G_1 \cap A) \cup (G_2 \cap A) = (G_1 \cup G_2) \cap A$.

 $= (G_1 \cup G_2) \cap B \qquad (\text{since } A \subseteq B)$

 $= (G_1 \cap B) \cap (G_2 \cap B)$

 $= B_1 \cap B_2.$

 $=\phi$.

 $\therefore (G_1 \cap A) \cup (G_2 \cap A) = \phi.$

Now, since *A* is connected, either $G_1 \cap A = \phi$ or $G_2 \cap A = \phi$.

Without loss of generality let us assume that $G_1 \cap A = \phi$.

Since G_1 is open in M, we have $G_1 \cap \overline{A} = \phi$.

 $\therefore G_1 \cap B = \phi. \qquad (\text{since } B \subseteq \overline{A})$

 $\therefore B_1 = \phi$ which is a contradiction.

Hence *B* is not connected.

4.2 Connected Subsets of *R*

Theorem 4.4:

A subspace of **R** is connected iff it is an interval.

Proof:

Let A be a connected subset of R. Suppose A is not an interval.

STUDY MATERIAL FOR B.SC. MATHEMATICS REAL ANALYSIS II SEMESTER – V, ACADEMIC YEAR 2020 - 21

Then there exists $a, b, c \in \mathbf{R}$ such that, a < b < c and $a, c \in A$ but $b \notin A$. Let $A_1 = (-\infty, b) \cap A$ and $A_2 = (b, \infty) \cap A$. Since $(-\infty, b)$ and (b, ∞) are open in **R**, A_1 and A_2 are open sets in A. Also, $A_1 \cap A_2 = \phi$ and $A_1 \cup A_2 = A$. Further $a \in A_1$ and $c \in A_2$. Hence $A_1 \neq \phi$ and $A_2 \neq \phi$. Thus A is the union of two disjoint nonempty open sets A_1 and A_2 . Hence *A* is not connected which is a contradiction. Hence A is an interval. Conversely, let A be an interval. Claim: A is connected. Suppose A is not connected. Let $A = A_1 \cup A_2$ where $A_1 \neq \phi, A_2 \neq \phi, A_1 \cap A_2 = \phi$ and A_1 and A_2 are closed in A. Choose $x \in A_1$ and $z \in A_2$. Since $A_1 \cap A_2 = \phi$ we have $x \neq z$. Without loss of generality let us assume that x < z. Now, since A is an interval we have $[x, z] \subseteq A$. (i.e) $[x, z] \subseteq A_1 \cup A_2$. : Every element of [x, z] is either in A_1 or in A_2 . Now, let $y = l. u. b. \{ [x, z] \cap A_1 \}.$ Clearly $x \le y \le z$. Hence $y \in A$. Let $\varepsilon > 0$ be given. Then by the definition of l. u. b. there exists $t \in [x, z] \cap A_1$ such that y - z $\varepsilon < t \leq \gamma$. $\therefore (y - \varepsilon, y + \varepsilon) \cap ([x, z] \cap A_1) \neq$ $\therefore y \in \overline{[x,z] \cap A_1}$ $\therefore y \in [x, z] \cap A_1$ $\therefore y \in A_1$. Again by the definition of $y, y + \varepsilon \in A_2$ for all $\varepsilon > 0$ such that $y + \varepsilon \leq z$. $\therefore y \in \overline{A_2}$ (since A_2 is closed) $\therefore y \in A_2$ $\therefore y \in A_1 \cap A_2$ [by(1) and (2)] which is a contradiction since $A_1 \cap A_2 = \phi$. Hence A is connected.

Theorem 4.5:

R is connected. **Proof:** $R = (-\infty, \infty)$ is an interval. \therefore **R** is connected.

4.3 Connectedeness and Continuity Theorem 4.6:

let M_1 be a connected metric space. Let M_2 be any metric space. Let $f: M_1 \rightarrow M_2$ be a continuous function. Then $f(M_1)$ is a connected subset of M_2 .

(i.e) Any continuous image of a connected set is connected.

Proof:

Let $f(M_1) = A$ so that f is function on M_1 onto A.

Claim: A is connected.

Suppose A is not connected. Then there exists a proper non empty subset of B of A which is both open and closed in A.

 $\therefore f^{-1}(B)$ is a proper nonempty subset of M_1 which is both open and closed in M_1 .

Hence M_1 is not connected which is contradiction.

Hence A is connected.

Theorem 4.7:

let f be a real valued continuous function defined on an interval I. Then f takes every value between any two values it assumes. (This is known as **the intermediate value theorem**) **Proof:**

Let $a, b \in I$ and $f(a) \neq f(b)$.

Without loss of generality we assume that f(a) < f(b).

Let c be such that f(a) < c < f(b).

The interval *I* is a connected subset of *R*.

 $\therefore f(I)$ is a connected subset of **R**. (by theorem 4.6)

 $\therefore f(I)$ is an interval. (by theorem 4.6)

Also $f(a), f(b) \in f(I)$. Hence $[f(a), f(b)] \subseteq f(I)$.

 $\therefore c \in f(I) \quad (\text{since } f(a) < c < f(b))$

 $\therefore c = f(x)$ for some $x \in I$.

4.2 Compact Metric Spaces

Definition: Let *M* be a metric space. A family of opensets $\{G_{\alpha}\}$ in *M* is called an open cover for *M* if $\cup G_{\alpha} = M$.

A subfamily of $\{G_{\alpha}\}$ which itself is an open cover is called a **subcover**.

A metric space M is said to be **compact** if every open cover for M has finite subcover.

(i.e) for each family of open sets $\{G_{\alpha}\}$ such that $\bigcup G_{\alpha} = M$, there exists a finite subfamily $\{G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}\}$ such that $\bigcup_{i=1}^n G_{\alpha_i} = M$.

Theorem 4.8:

Let M be a metric space. Let $A \subseteq M$. Ais compact iff given a family of open sets $\{G_{\alpha}\}$ in M such that $\cup G_{\alpha} \supseteq A$ there exists a subfamily

 $G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}$ such that $\bigcup_{i=1}^n G_{\alpha_i} \subseteq A$.

Proof:

Let A be a compact subset of M.

Let $\{G_{\alpha}\}$ be a family of open sets in M such that $\cup G_{\alpha} \supseteq A$.

Then $(\cup G_{\alpha}) \cap A = A$. $:\cup (G_{\alpha} \cap A) = A.$ Also $G_{\alpha} \cap A$ is open in A. ∴ The family $\{G_{\alpha} \cap A\}$ is an open cover for A. Since A is compact this open cover has a finite subcover, say, $G_{\alpha_1} \cap A$, $G_{\alpha_2} \cap A$, ..., $G_{\alpha_n} \cap A$. $\therefore \bigcup_{i=1}^{n} (G_{\alpha_i} \cap A) = A.$ $\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cap A = A.$ $\therefore \bigcup_{i=1}^n G_{\alpha_i} \subseteq A.$ Conversely let $\{H_{\alpha}\}$ be an open cover for *A*. \therefore Each H_{α} is open in A. \therefore $H_{\alpha} = G_{\alpha} \cap A$ where G_{α} is open in M. Now, $\cup H_{\alpha} = A$. $:: \cup (G_{\alpha} \cap A) = A.$ $\therefore (\cup G_{\alpha}) \cap A = A.$ $\therefore \cup G_{\alpha} \supseteq A.$ Hence by hypothesis there exists a finite subfamily $G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}$ such that $\bigcup_{i=1}^n G_{\alpha_i} \subseteq A$. $\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cap A = A.$ $\therefore \bigcup_{i=1}^{n} (G_{\alpha_i} \cap A) = A.$ $\therefore \bigcup_{i=1}^{n} H_{\alpha_i} = A.$ Thus $\{H_{\alpha_1}, H_{\alpha_2}, \dots, H_{\alpha_n}\}$ is a finite subcover of the open cover $\{H_{\alpha_n}\}$.

 \therefore Ais compact.

Theorem 4.9:

Any compact subset A of a metric space M is bounded.

Proof:

Let $x_0 \in A$. Consider $\{B(x_0, n) | n \in N\}$. Clearly $\bigcup_{i=1}^n B(x_0, n) = M$.

 $\therefore \bigcup_{i=1}^{n} B(x_0, n) \supseteq A.$

Since A is compact there exists a finite subfamily say, $B(x_0, n_1), B(x_0, n_2), \dots, B(x_0, n_k)$

such that $\bigcup_{i=1}^{k} B(x_0, n_1) \supseteq A$.

Let $n_0 = \max\{n_1, n_2, \dots, n_k\}.$

Then $\bigcup_{i=1}^{k} B(x_0, n_i) = B(x_0, n_0).$

$$\therefore B(x_0, n_0) \supseteq A.$$

We know that $B(x_0, n_0)$ is a bounded set and a subset of a bounded set is bounded. Hence A is bounded.

Theorem 4.10:

Any compact subset A of a metric space (M, d) is closed.

Proof:

To prove:*A* is closed.

We shall prove that A^c is open. Let $y \in A^c$ and let $x \in A$. Then $x \neq y$. $\therefore d(x, y) = r_x > 0.$ It can be easily verified that $B\left(x,\frac{1}{2}r_x\right) \cap B\left(y,\frac{1}{2}r_x\right) = \phi$. Now consider the collection $\{B\left(x, \frac{1}{2}r_x\right) | x \in A\}$. Clearly $\bigcup_{x \in A} B\left(x, \frac{1}{2}r_x\right) \supseteq A$. Since A is compact there exists a finite number of such open balls say, $B\left(x_{1},\frac{1}{2}r_{x_{1}}\right),\ldots,B\left(x_{n},\frac{1}{2}r_{x_{n}}\right)$ such that $\bigcup_{i=1}^{n}B\left(x_{i},\frac{1}{2}r_{x_{i}}\right)\supseteq A$. ------(1) Now, let $V_y = \bigcap_{i=1}^n B\left(y, \frac{1}{2}r_x\right)$. Clearly V_v is an open set containing y. Since $B\left(y,\frac{1}{2}r_y\right) \cap \left(x,\frac{1}{2}r_x\right) = \phi$, we have $V_y \cap B(x,\frac{1}{2}r_{x_i}) = \phi$ for each $i = 1,2, \dots, n$. $\therefore V_y \cap \left[\bigcup_{i=1}^n B(x, \frac{1}{2}r_{x_i})\right] = \phi.$ $\therefore V_{v} \cap A = \phi.$ (by (1)). $\therefore V_{\nu} \subseteq A^c$. $\therefore \bigcup_{v \in A^c} V_v = A^c$ and each V_v is open. $\therefore A^c$ is open. Hence A is closed. Theorem 4.11: A closed subspace of a compact metric space is compact. Proof: Let M be a compact metric space. Let A be a nonempty closed subset of M. **Claim:***A* is compact. Let $\{G_{\alpha} \mid \alpha \in I\}$ be a family of open sets in M such that, $\bigcup_{\alpha \in I} G_{\alpha} \supseteq A$. $\therefore A^c \cup [\bigcup_{\alpha \in I} G_\alpha] = M.$ Also A^c is open. (since A is closed). \therefore { $G_{\alpha}/\alpha \in I$ } \cup { A^{c} } is an open cover for M. Since M is compact it has a finite subcover say, $G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}, A^c$. $\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cup A^c = M.$ $\therefore \bigcup_{i=1}^n G_{\alpha_i} \supseteq A.$ \therefore Ais compact. 4.3 Compact Subsets of R.

Theorem 4.12: (Heine Borel Theorem)

Any closed interval [a, b] is a compact subset of **R**. **Proof:**

Let $\{G_{\alpha} / \alpha \in I\}$ be a family of open sets in **R** such that $\bigcup_{\alpha \in I} G_{\alpha} \supseteq [a, b]$. Let $S = \{x | x \in [a, b] \text{ and } [a, x] \text{ can be covred by a finite number of } G'_{\alpha}s\}$.

Clearly $a \in S$ and hence $S \neq \phi$. Also *S* is bounded above by *b*. Let *c* denote the *l*. *u*. *b*.of *S*. Clearly $c \in [a, b]$. $\therefore c \in G_{\alpha_1}$ for some $\alpha_1 \in I$. Since G_{α_1} is open, there exists $\varepsilon > 0$ such that $(c - \varepsilon, c + \varepsilon) \subseteq G_{\alpha_1}$. Choose $x_1 \in [a, b]$ such that $x_1 < c$ and $[x_1, c] \subseteq G_{\alpha_1}$. Now, since $x_1 < c$, $[a, x_1]$ can be covered by a finite number of G_{α} 's. These finite number of G_{α} 's together with G_{α_1} covers [a, c]. \therefore By definition of *S*, *c* \in *S*. Now, we claim that c = b. Suppose $c \neq b$. Then choose $x_2 \in [a, b]$ such that $x_2 > c$ and $[c, x_2] \subseteq G_{\alpha_1}$. As before, $[a, x_2]$ can be covered by a finite number of G_{α} 's. Hence $x_2 \in S$. But $x_2 > c$ which is a contradiction, since c is the l. u. b. of S. $\therefore c = b.$ \therefore [a, b]can be covered by a finite number of G_{α} 's.

 \therefore [*a*, *b*] is a compact subset of **R**.

Theorem 4.13:

Asubset of **R** is compact iff A is closed and bounded.

Proof:

If A is compact then A is closed and bounded.

Conversely, let A be a subset of \mathbf{R} which is closed and bounded.

Since A is bounded we can find a closed interval [a, b] such that $A \subseteq [a, b]$.

Since A is closed in \mathbf{R} , A is closed in [a, b] also.

Thus A is a closed subset of the compact space [a, b].

Hence *A* is compact. (by theorem 4.11)

<u>UNIT - V</u>

RIEMAN INTEGRAL

If I is the integral of real number, the length of I is denoted by |I|.

Set of measure Zero:

A subset $E \subset R$ is said to be a measure Zero if for each $\varepsilon > 0$, there exists a finite (or) countable number of open intervals, $I_1, I_2, \dots \dots$ such that $E \subset \bigcup_{n=1}^{\infty} I_n$. $\sum_{n=1}^{\infty} |I_n| < \varepsilon$.

Derivatives:

Let f be a real valued function defined on an Interval $[a, b] \subseteq R$. It is derivable at an interior point $c \in (a, b)$.

(i) If
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 exists.
 $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ exists.
Where $x = c + h \to x - c = h$.

(ii)
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 is called the left hand derivative = $Lf'(c)$.

(iii)
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 is called the right hand derivative $= Rf'(c)$

(iv) If
$$f'(c) = Lf'(c) = Rf'(c)$$
 then we say $f(x)$ is derivable.

(v)
$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$

(vi)
$$f'(b) = \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$$
.

Example 1:

Show that the function $f(x) = x^2$ is derivable in [0,1]. Solution:

(i) Let
$$x_0 \in (0,1)$$

 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$
 $= \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}.$
 $= \lim_{x \to x_0} \frac{(x + x_0)(x - x_0)}{x - x_0}.$
 $= \lim_{x \to x_0} (x + x_0) = x_0 + x_0 = 2x_0.$

∴derivable exists an interior point.

(ii)
$$f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$$
.
 $= \lim_{x \to 0^+} \frac{x^2 - 0}{x - 0}$.
 $= \lim_{x \to 0^+} \frac{x^2}{x}$.
 $= \lim_{x \to 0^+} x = 0$.

 $\therefore f'(0)$ exists.

(iii)
$$f'(1) = \lim_{x \to f} \frac{f(x) - f(1)}{x - 1}.$$
$$= \lim_{x \to f} \frac{x^2 - 1}{x - 1}.$$
$$= \lim_{x \to f} \frac{(x + 1)(x - 1)}{(x - 1)}.$$
$$= \lim_{x \to f} (x + 1) = 1 + 1 = 2.$$

 $\therefore f'(1)$ exists.

Hence f(x) is differentiable in the closed interval (0,1).

Example 2:

A function f is defined on R where $f(x) = \begin{cases} x & if \ 0 \le x < 1 \\ 1 & if \ x \ge 1 \end{cases}$. Discuss the derivability at x = 1.

Solution:

$$Lf'(1) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}.$$

= $\lim_{x \to 1^{-}} \frac{x - 1}{x - 1}.$
= $\lim_{x \to 1^{-}} 1.$
 $\therefore Lf'(1) = 1.$
 $Rf'(1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}.$
= $\lim_{x \to 1^{+}} \frac{1 - 1}{x - 1}.$
= $0.$
 $\therefore Rf'(1) = 0.$
 $Lf'(1) \neq Rf'(1).$
(i.e.) $f'(1)$ does not exists.
f is not derivable at $x = 1$.

Example 3:

Discuss the derivability of f(x) at 0, f(x) = |x|. Solution:

$$Lf'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(1)}{x - 0}.$$

= $\lim_{x \to 0^{-}} \frac{-x - 0}{x}.$
= $\lim_{x \to 0^{-}} \frac{-x}{x}$
= $\lim_{x \to 0^{-}} 1.$
 $Lf'(0) = -1.$
 $Rf'(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}.$
= $\lim_{x \to 0^{+}} \frac{x - 0}{x - 0}.$
= $\lim_{x \to 0^{+}} \frac{1}{x - 0} = 1$

 $\therefore Rf'(1) = 1.$ $Lf'(1) \neq Rf'(1).$ (i.e.) f'(0) does not exists. f is not derivable at x = 0.

Example 4:

$$f(x) = \begin{cases} x^2 \sin x \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}.$$

Prove that f is derivable at x = 0 but $\lim_{x \to 0} f'(x) \neq f'(0)$.

Solution:

$$Lf'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(1)}{x - 0}$$

= $\lim_{x \to 0^{-}} \frac{x^2 \sin \frac{1}{x} - 0}{x}$.
= $\lim_{x \to 0^{-}} \frac{x^2}{x} \sin \frac{1}{x}$.
= $\lim_{x \to 0^{-}} \frac{\sin \frac{1}{0}}{x} = 0$.
$$Lf'(0) = 0.$$
$$Rf'(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}.$$

= $\lim_{x \to 0^{+}} \frac{x^2 \sin \frac{1}{x} - 0}{x - 0}.$
= $\lim_{x \to 0^{+}} x^2 \sin \frac{1}{x}.$
= $\lim_{x \to 0^{+}} \sin \frac{1}{0}$
 $\therefore Rf'(1) = 0.$

Lf'(1) = Rf'(1).Hence f is not derivable at x = 0.

Theorem:

A function which is derivable at a point is necessarily continuous at that point.

Proof:

Let a function f be derivable at x = c. Then $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exist. **To prove:** f is continuous at $x = c \cdot f(x) - f(c) = \frac{f(x) - f(c)}{x - c} \times (x - c)$ $\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} [\frac{f(x) - f(c)}{x - c} (x - c)].$ $= [\lim_{x \to c} \frac{f(x) - f(c)}{x - c}][\lim_{x \to c} (x - c)].$ $\lim_{x \to c} [f(x) - f(c)] = 0.$ $\lim_{x \to c} f(x) - \lim_{x \to c} f(c) = 0.$ $\lim_{x \to c} f(x) = \lim_{x \to c} f(c).$

 $\therefore \lim f(x) = f(c).$

 \therefore *f* is continuous in x = c.

Note:

Converse of this theorem need not be true.

Rolle's theorem:

If a function f defined on [a, b] is,

- (i) Continuous on [a, b].
- (ii) Derivable on (a, b).
- (iii) f(a) = f(b) then there exists one real number c between $a \times b[a < c < b]$ such that f'(c) = 0.

Proof:

Since the function is continuous on [a, b], it is bounded.

Let m and M are the infremum (g.l.b) and supremum (l.u.b) respectively of the function f then there exists points c and d in [a, b] such that f(c) = m and f(d) = M.

Case (i):

Let m = M, then f is constant. f(x) = M for all $x \in [a, b]$. \therefore f(x) = 0 for all $x \in [a, b]$. For $c \in (a, b)$, f(c) = m, that is f'(c) = 0 for all $c \in (a, b)$. Case (ii): Let $m \neq M$. Now both m and M cannot be equal to f(a). $f(c) = m \neq f(a) \Rightarrow c \neq a.$ Similarly, $f(c) = M \neq f(b) \Rightarrow c \neq b$. $\Rightarrow c \in (a, b).$ Claim: f'(c) = 0. If f'(c) < 0, there exists $(c, c + \delta_1)$ such that f(x) < f(c) = M for all $x, x \in (c, c + \delta_1)$. Which is a contradiction. If f'(c) > 0, there exists $(c - \delta_1, c)$ such that f(x) < f(c) = M for all $x, x \in (c - \delta_1, c)$. Which is a contradiction. Hence, f'(c) = 0.

Legrange's Mean Value Theorem

If a function f defined on [a, b] is, (i) Continuous on [a, b]. (ii) Derivable on (a, b). f(a) = f(b)then there exists one real number c between $a \times b[a < c < b]$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. **Proof:**

Let $\phi(x) = f(x) + Ax$ where *A* is a constant such that $\phi(a) = \phi(b)$. Then f(a) + Aa = f(b) + Ab. A(b - a) = f(a) - f(b). = -[f(b) - f(a)] $A = \frac{-[f(b) - f(a)]}{b - a}$. Since $\phi(x)$ is a sum of two continuous and derivable function.

- (i) ϕ is continuous on [a, b].
- (ii) ϕ is derivable on [a, b].

(iii)
$$\phi(a) = \phi(b)$$
.

Therefore by Rolle's theorem, there exists $c \in (a, b)$ such that $\phi'(c) = 0$.

(i.e) f'(c) + A = 0. f'(c) = -A. $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Cauchy's Mean Value Theorem:

If two functions f, g defined on [a, b] are

- (i) Continuous on [a, b].
- (ii) Derivable on [a, b].
- (iii) $g'(x) \neq 0$ for any $x \in (a, b)$ then there exists one real number c between a and b such that $\frac{f(b)-f(a)}{a(b)-a(a)} = \frac{f'(c)}{a'(c)}$

The Fundamental Theorem of Calculus:

A function f is bounded and integrable on [a, b] and there exists a function f such that f' =

$$f \text{ on } [a, b]$$
. Then $\int_a^b f \, dx = f(b) - f(a)$.

Proof:

Given $\varepsilon > 0$. There exists $\delta > 0$ such that for every partition P where, $P = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}.$ With norm $\mu(P) - \delta$ (where $\mu(P) = max\Delta x_i$). $|\sum_{i=1}^n f(t_i) \Delta x_i - \int_a^b f dx| < \varepsilon. [since <math>t_i \in (x_{i-1}, x_i)]$. $\Rightarrow \sum_{i=1}^n f(t_i) \Delta x_i = \int_a^b f dx$. -------(1) By Lagrange's Mean value Theorem, $\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = f(t_i)$. (i.e). $\frac{f(x_i) - f(x_{i-1})}{\Delta x_i} = f(t_i)$. $\Rightarrow f(x_i) - f(x_{i-1}) = f(t_i)\Delta x_i$. ------(2) Using (2) in (1) we get, $\int_a^b f dx = \sum_{i=1}^n [f(x_i) - f(x_{i-1})]$. $\int_a^b f dx = F(b) - F(a)$.

